首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized aa lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands.  相似文献   

2.
Rejuvenated-stage tuff cones (Honolulu Volcanics) on Koolau volcano, Oahu, Hawaii, contain xenoliths of Koolau shield basalt. Because Koolau subaerial shield lavas represent a Hawaiian geochemical 'end member', and submarine shield lavas have compositions with some affinities to Mauna Loa and Kilauea, we analyzed 28 xenolithic basalts from Salt Lake and Koko Head cones to determine how these seemingly random samplings of the Koolau profile compare to established Koolau geochemistry. Analyses reveal that 24 are shield tholeiitic basalt—the focus of this study—and 4 are rejuvenated-stage basaltic rocks. The tholeiitic xenoliths represent largely upper Koolau shield lavas, as these samples (8.3 to 5.8 wt% MgO) have, with one exception, overall major- and trace-element compositions that overlap those of Koolau subaerial shield lavas. Secondary processes, however, created some distinctions—namely, enrichments/depletions in K, Ba, Sr, SiO2, and FeO, and, due to zeolitization (chabazite with attending okenite and apophyllite), elevated CaO. One xenolithic basalt with 8.2 wt% MgO has higher Ti, Zr, Nb, and Sc, and lower Zr/Nb than subaerial lavas, and appears to represent relatively early, deeper shield—thereby reinforcing that the Koolau shield source varied temporally. Olivine, orthopyroxene, and plagioclase are the phenocrysts (clinopyroxene is rare), and their core compositions range widely across the suite—Fo87.8–72, orthopyroxene Mg#s 85–72, and An74–60. Several xenolithic basalts have both normally and reversely zoned orthopyroxene and plagioclase with a variety of core compositions (e.g., orthopyroxene-core Mg#s 82, 77, and 72, all in one sample). These compositions and zonations record evidence for wide compositional ranges of replenishment (MgO ~13–8 wt%) and reservoir (MgO ~7 to <5 wt%) magmas mixing in varying proportions; however, extreme MgO lavas (~13 and <5 wt%) are not observed as either subaerial or xenolithic basalt, but are indicated by phenocryst cores of Fo87.8 and orthopyroxene-Mg# 72. The Koolau magma-mixing history resembles that of Kilauea, and is unlike the 'steady-state' mixing known for Mauna Loa. Finally, these basalt samples show that any xenolithic occurrence of Koolau lava is subject to the zeolitization prevalent in the tuff-cone hosts.Editorial handling: M. Carroll  相似文献   

3.
A major carbonate reef which drowned 13 ka is now submerged 150 m below sea level on the west coast of the island of Hawaii. A 25-km span of this reef was investigated using the submersibleMakali'i. The reef occurs on the flanks of two active volcanoes, Mauna Loa and Hualalai, and the lavas from both volcanoes both underlie and overlie the submerged reef. Most of the basaltic lava flows that crossed the reef did so when the water was much shallower, and when they had to flow a shorter distance from shoreline to reef face. Lava flows on top of the reef have protected it from erosion and solution and now occur at seaward-projecting salients on the reef face. These relations suggest that the reef has retreated shoreward as much as 50 m since it formed. A 7-km-wide shadow zone occurs where no Hualalai lava flows cross the reef south of Kailua. These lava flows were probably diverted around a large summit cone complex. A similar shadow zone on the flank of Mauna Loa volcano in the Kealakekua Bay region is downslope from the present Mauna Loa caldera, which ponds Mauna Loa lava and prevents it from reaching the coastline. South of the Mauna Loa shadow zone the - 150 m reef has been totally covered and obscured by Mauna Loa lava. The boundary between Hualalai and Mauna Loa lava on land occurs over a 6-km-wide zone, whereas flows crossing the - 150 m reef show a sharper boundary offshore from the north side of the subaerial transition zone. This indicates that since the formation of the reef, Hualalai lava has migrated south, mantling Mauna Loa lava. More recently, Mauna Loa lava is again encroaching north on Hualalai lava.  相似文献   

4.
A 200-m section of Koolau basalt was sampled in the 1.6-km Trans-Koolau (T–K) tunnel. The section includes 126 aa and pahoehoe lava flows, five dikes and ten thin ash units. This volcanic section and the physical characteristics of the lava flows indicate derivation from the nearby northwest rift zone of the Koolau shield. The top of the section is inferred to be 500–600 m below the pre-erosional surface of the Koolau shield. Therefore, compared with previously studied Koolau lavas, this section provides a deeper, presumably older, sampling of the shield. Shield lavas from Koolau Volcano define a geochemical end-member for Hawaiian shields. Most of the tunnel lavas have the distinctive major and trace element abundance features (e.g. relatively high SiO2 content and Zr/Nb abundance ratio) that characterize Koolau lavas. In addition, relative to the recent shield lavas erupted at Kilauea and Mauna Loa volcanoes, most Koolau lavas have lower abundances of Sc, Y and Yb at a given MgO content; this result is consistent with a more important role for residual garnet during the partial melting processes that created Koolau shield lavas. Koolau lavas with the strongest residual garnet signature have relatively high 87Sr/86Sr, 187Os/188Os, 18O/16O, and low 143Nd/144Nd. These isotopic characteristics have been previously interpreted to reflect a source component of recycled oceanic crust that was recrystallized to garnet pyroxenite. This component also has high La/Nb and relatively low 206Pb/204Pb, geochemical characteristics which are attributed to ancient pelagic sediment in the recycled crust. Although most Koolau lavas define a geochemical endmember for Hawaiian shield lavas, there is considerable intrashield geochemical variability that is inferred to reflect source characteristics. The oldest T–K tunnel lava flow is an example. It has the lowest 87Sr/86Sr, Zr/Nb and La/Nb, and the highest 143Nd/144Nd ratio found in Koolau lavas. In most respects it is similar to lavas from Kilauea Volcano. Therefore, the geochemical characteristics of the Koolau shield, which define an end member for Hawaiian shields, reflect an important role for recycled oceanic crust, but the proportion of this crust in the source varied during growth of the Koolau shield. Received: 1 June 1998 / Accepted: 30 August 1998  相似文献   

5.
New Sr and Pb isotope data are presented for a selection of lavas and associated coarse-grained blocks from Ascension Island. K-Ar dates for the lavas range up to1.5±0.2Ma. Initial87Sr/86Sr ratios are consistent with earlier measurements and for most rocks are ca. 0.7029, but range up to 0.7135 in the case of the most evolved lavas and blocks. Pb isotope data are also consistent with earlier measurements, but the Pb in two gabbroic blocks is less radiogenic than Pb in the other rocks. It is suggested that these gabbroic blocks crystallized from a magma of tholeiitic composition whose source was similar to that of mid-oceanic ridge basalt whereas the lavas and other blocks crystallized from mildly alkaline magmas derived from a source further from the crest of the Mid-Atlantic Ridge. The high87Sr/86Sr ratios result from contamination of the most silicic magma by radiogenic Sr from pelagic sediments. These data and their interpretation are consistent with the petrological and geochemical observations that the granite blocks are the coarse-grained equivalents of the volcanic suite [11] and not fragments of relict continental material [2,3].  相似文献   

6.
Many researchers have focused on the tectonic evolution of North Qilian Mountains (NQM) since the 1970s[1―7]. However, the tectonic affinity of the an- cient oceanic mantle in early Paleozoic remains in de-bate. Three general explanations for it have been pro- posed. The first one suggests that the ancient ocean was a part of Proto-Tethys, and the tectonic evolution of NQM should be regarded as a portion of the562 Science in China: Series D Earth Sciences Tethyan tectonic domain[1]. …  相似文献   

7.
The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse.  相似文献   

8.
Along the two volcanic off-rift zones in Iceland, the Snfellsnes volcanic zone (SNVZ) and the South Iceland volcanic zone (SIVZ), geochemical parameters vary regularly along the strike towards the centre of the island. Recent basalts from the SNVZ change from alkali basalts to tholeiites where the volcanic zone reaches the active rift axis, and their87Sr/86Sr andTh/U ratios decrease in the same direction. These variations are interpreted as the result of mixing between mantle melts from two distinct reservoirs below Snfellsnes. The mantle melt would be more depleted in incompatible elements, but witha higher3He/4He ratio (R/Ra≈ 20) beneath the centre of Iceland than at the tip of the Snfellsnes volcanic zone (R/Ra≈ 7.5).

From southwest to northeast along the SIVZ, the basalts change from alkali basalts to FeTi basalts and quartz-normative tholeiites. TheTh/U ratio of the Recent basalts increases and both (230Th/232Th) andδ18O values decrease in the same direction. This reflects an important crustal contamination of the FeTi-rich basalts and the quartz tholeiites. The two types of basalts could be produced through assimilation and fractional crystallization in which primary alkali basaltic and olivine tholeiitic melts ‘erode’ and assimilate the base of the crust. The increasingly tholeiitic character of the basalts towards the centre of Iceland, which reflects a higher degree of partial melting, is qualitatively consistent with increasing geothermal gradient and negative gravity anomaly.

The highest Sr isotope ratio in Recent basalts from Iceland is observed inÖrfajökull volcano, which has a3He/4He ratio (R/Ra≈ 7.8) close to the MORB value, and this might represent a mantle source similar to that of Mauna Loa in Hawaii.  相似文献   


9.
Pb and Sr isotopic ratios have been determined for tholeiitic shield-building, alkalic cap, and post-erosional stage lavas from Haleakala Crater. Pb isotopic compositions of the tholeiites overlap those of the alkalic cap lavas, although87Sr/86Sr ratios of these two suites are distinct. Alkalic cap and post-erosional lavas appear to be indistinguishable on the basis of Sr and Pb isotopic composition.Sr and Pb isotopic ratios of Haleakala post-shield-building lavas are positively correlated. Such a trend is previously undocumented for any suite of Hawaiian lavas and contrasts with the general negative correlation observed for data from Hawaiian tholeiites. These relations are consistent with a three-component petrogenetic mixing model. Specifically, it is proposed that magma batches at individual Hawaiian volcanoes formed by: (1) mixing of melts generated from mantle plumes containing two isotopically distinct mantle components (primitive vs. enriched), and (2) subsequent variable degrees of interaction between these plume melts and a third (MORB signature) mantle reservoir prior to their emplacement in a crustal magma chamber. These observations and inferences provide new constraints on physical models of Hawaiian magmatism. Based on observed temporal isotopic variations of Haleakala lavas, it is suggested that the ratio of enriched: primitive mantle components in the Hawaiian plume source decreases during the waning stages of alkalic volcanism. Over the same time interval, both decreasing melt production and protracted residence of ascending melts within the upper mantle contribute to a systematic increase in the ratio of depleted vs. plume component.  相似文献   

10.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

11.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   

12.
Analyses of rim-to-interior samples of fresh tholeiitic pillow basalts, deuterically altered holocrystalline basalts, and older, weathered tholeiitic basalts from the deep sea indicate that 87Sr/86Sr ratios of the older basalts are raised by low temperature interaction with strontium dissolved in sea water. 87Sr/86Sr correlates positively with H2O in these basalts; however, there is little detectable modification of the strontium isotope composition in rocks with H2O contents less than 1%. The isotope changes appear to be a function of relatively long-term, low-temperature weathering, rather than high-temperature or deuteric alteration. Strontium abundance and isotopic data for these rocks suggest that strontium content is only slightly modified by interaction with sea water, and it is a relatively insensitive indicator of marine alteration. Average Rb-Sr parameters for samples of apparently unaltered basalt are: Rb= 1.11ppm; Sr= 132ppm; 87Sr/86Sr= 0.70247.  相似文献   

13.
New major and trace element and Sr–Nd isotope data are presented for basaltic glasses from active spreading centers (Central Lau Spreading Center (CLSC), Relay Zone (RZ) and Eastern Lau Spreading Center (ELSC)) in the Central Lau Basin, SW Pacific. Basaltic lavas from the Central Lau Basin are mainly tholeiitic and are broadly similar in composition to mid-ocean ridge basalts (MORB). Their generally high 87Sr/86Sr ratios, combined with relatively low 143Nd/144Nd ratios are more akin to MORB from the Indian rather than Pacific Ocean. In detail, the CLSC, RZ and ELSC lavas are generally more enriched in large ion lithophile elements (Rb, Ba, Sr, and K) than average normal-MORB, which suggests that the mantle beneath the Central Lau Basin was modified by subducted slab-derived components. Fluid mobile/immobile trace element and Sr – Nd isotope ratios suggest that the subduction components were essentially transferred into the mantle via hydrous fluids derived from the subducted oceanic crust; contributions coming from the subducted sediments are minor. Compared to CLSC lavas, ELSC and RZ lavas show greater enrichment in fluid mobile elements and depletion in high field strength elements, especially Nb. Thus, with increasing distance away from the arc, the influence of subduction components in the mantle source of Lau Basin lavas diminishes. The amount of hydrous fluids also influences the degree of partial melting of the mantle beneath the Central Lau Basin, and hence the degree of melting also decreases with increasing distance from the arc.  相似文献   

14.
Geochemical and isotopic analyses (Sr–Nd–Pb) of late Miocene to Quaternary plateau lavas from the Pali Aike and Morro Chico areas (52°S) were undertaken to constrain the melting processes and mantle sources that contributed to magma generation and the geodynamic evolution of southernmost Patagonia, South America. The Pali Aike and Morro Chico lavas are alkaline (Pali Aike, 45–49 wt.% SiO2; 4.3–5.9 wt.% Na2O+K2O) and subalkaline (Morro Chico, 50.5–50.8 wt.% SiO2; 4.0–4.4 wt.% Na2O+K2O), relatively primitive (Pali Aike, 9.5–13.7 wt.% MgO; Morro Chico, 7.6–8.8 wt.% MgO) mafic volcanic rocks that have typical intraplate ocean island basalt‐like signatures. Incompatible trace element ratios and isotopic ratios of the Pali Aike and Morro Chico lavas differ from those of the majority of Neogene southern Patagonian slab window lavas in showing more enriched characteristics and are similar to high‐μ (HIMU)‐like basalts. The rare earth element (REE) modeling to constrain mantle melting percentages suggests that these lavas were produced by low degrees of partial melting (1.0–2.0% for Pali Aike lavas and about 2.6–2.7% for Morro Chico lavas) of a garnet lherzolite mantle source. The major systematic variations of Sr–Nd–Pb isotopes in southern Patagonian lavas are related to geographic location. The Pali Aike and Morro Chico lavas from the southernmost part of Patagonia have lower 87Sr/86Sr and higher 143Nd/144Nd and 206Pb/204Pb ratios, relative to most of the southern Patagonian lavas erupted north of 49.5°S, pointing to a HIMU‐like signature. An isotopically depleted and HIMU‐like asthenospheric domain may have been the main source of magmas in the southernmost part of Patagonia (e.g. Pali Aike, Morro Chico, and Camusu Aike volcanic field), suggesting the presence of a major discontinuity in the isotopic composition of the asthenosphere in southern Patagonia. On the basis of geochemical and isotope data and the available geological and geotectonic reconstructions, a link between the HIMU asthenospheric mantle domain beneath southernmost Patagonia and the HIMU mega‐province of the southwestern Pacific Ocean is proposed.  相似文献   

15.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

16.
Alkali basalts of Pliocene age are the last episode of volcanism in the SE Spain Volcanic Province, postdating a complex series of Miocene calc-alkaline to ultrapotassic rocks. This volcanism is represented by small outcrops and vents NW of Cartagena that has been interpreted as a volcanic episode similar to the contemporaneous monogenetic alkaline basaltic volcanism of the Iberian Peninsula and Western/Central Europe. However, their geochemical signature is characterised by relatively higher 87Sr/86Sr ratios as well as distinct trace element anomalies which, at different scale, are only found in the spatially related calc-alkaline to ultrapotassic volcanism. Quantitative modelling of these data demonstrate that the geochemical signature of the Pliocene alkali basalts of Cartagena can be explained by the interaction between primitive melts generated from a sublithospheric mantle source similar to that identified for other volcanic regions of Spain, and liquids derived from the overlying lithospheric mantle. This interaction implies that the alkali basalts show some geochemical features only observed in mantle lithosphere-derived melts (e.g. Sr isotope enrichment and Th–U–Pb positive anomalies), while retaining an overall geochemical signature similar to other Iberian basalts (e.g. Rb–K negative anomalies). This model also implies that beneath the SEVP, enriched (metasomatized) portions were still present within the lithospheric mantle after the Miocene magmatic episodes.  相似文献   

17.
The study of the geochemical compositions and K-Ar or Ar-Ar ages of ca. 350 Neogene and Quaternary lavas from Baja California, the Gulf of California and Sonora allows us to discuss the nature of their mantle or crustal sources, the conditions of their melting and the tectonic regime prevailing during their genesis and emplacement. Nine petrographic/geochemical groups are distinguished: ??regular?? calc-alkaline lavas; adakites; magnesian andesites and related basalts and basaltic andesites; niobium-enriched basalts; alkali basalts and trachybasalts; oceanic (MORB-type) basalts; tholeiitic/transitional basalts and basaltic andesites; peralkaline rhyolites (comendites); and icelandites. We show that the spatial and temporal distribution of these lava types provides constraints on their sources and the geodynamic setting controlling their partial melting. Three successive stages are distinguished. Between 23 and 13 Ma, calc-alkaline lavas linked to the subduction of the Pacific-Farallon plate formed the Comondú and central coast of the Sonora volcanic arc. In the extensional domain of western Sonora, lithospheric mantle-derived tholeiitic to transitional basalts and basaltic andesites were emplaced within the southern extension of the Basin and Range province. The end of the Farallon subduction was marked by the emplacement of much more complex Middle to Late Miocene volcanic associations, between 13 and 7 Ma. Calc-alkaline activity became sporadic and was replaced by unusual post-subduction magma types including adakites, niobium-enriched basalts, magnesian andesites, comendites and icelandites. The spatial and temporal distribution of these lavas is consistent with the development of a slab tear, evolving into a 200-km-wide slab window sub-parallel to the trench, and extending from the Pacific coast of Baja California to coastal Sonora. Tholeiitic, transitional and alkali basalts of subslab origin ascended through this window, and adakites derived from the partial melting of its upper lip, relatively close to the trench. Calc-alkaline lavas, magnesian andesites and niobium-enriched basalts formed from hydrous melting of the supraslab mantle triggered by the uprise of hot Pacific asthenosphere through the window. During the Plio-Quaternary, the ??no-slab?? regime following the sinking of the old part of the Farallon plate within the deep mantle allowed the emplacement of alkali and tholeiitic/transitional basalts of deep asthenospheric origin in Baja California and Sonora. The lithospheric rupture connected with the opening of the Gulf of California generated a high thermal regime associated to asthenospheric uprise and emplaced Quaternary depleted MORB-type tholeiites. This thermal regime also induced partial melting of the thinned lithospheric mantle of the Gulf area, generating calc-alkaline lavas as well as adakites derived from slivers of oceanic crust incorporated within this mantle.  相似文献   

18.
Alkali basalts and nephelinites from the southern end of the East African Rift (EAR) in northern Tanzania have incompatible trace element compositions that are similar to those of ocean island basalts (OIB). They define a considerable range of Sr, Nd and Pb isotopic compositions (87Sr/86Sr= 0.7035−0.7058,εNd = −5to+3, and206Pb/204Pb= 17.5−21.3), each of which partially overlaps the range found in OIB. However, they occupy a unique position in combined Nd, Sr and Pb isotopic compositional space. Nearly all of the lavas have radiogenic Pb, similar to HIMU with high time-integrated238U/204Pb coupled with unradiogenic Nd (+2 to −5) and radiogenic Sr (>0.704), similar to EMI. This combination has not been observed in OIB and provides evidence that these magmas predominantly acquired their Sr, Nd and Pb in the subcontinental lithospheric mantle rather than in the convecting asthenosphere. These data contrast with compositions for lavas from farther north in the EAR. The Pb isotopic compositions of basalts along the EAR are increasingly radiogenic from north to south, indicating a fundamental change to sources with higher time-integratedU/Pb, closer to the older cratons in the south. An ancient underplated OIB melt component, isolated for about 2 Ga as enriched lithospheric mantle and then remelted, could generate both the trace element and isotopic data measured in the Tanzanian samples. Whereas the radiogenic Pb in Tanzanian lavas requires a source with high time-integratedU/Pb, most continental basalts that are thought to have interacted with the continental lithospheric mantle have unradiogenic Pb, requiring a source with a history of lowU/Pb. Such lowU/Pb is readily accomplished with the addition of subduction-derived components, since the lower averageU/Pb of arc basalts (0.15) relative to OIB (0.36) probably reflects addition of Pb from subducted oceanic crust. If the subcontinental lithosphere is normally characterized by low time-integratedU/Pb it would appear that subduction magmatism is more important than OIB additions in supplying the Pb inventory of the lithospheric mantle. However,U/Pb ratios of xenoliths derived from the continental lithospheric mantle suggest that both processes may be important. This apparent discrepancy could be because xenoliths are not volumetrically representative of the subcontinental lithospheric mantle, or, more likely, that continental lithospheric mantle components in basalts are normally only identified as such when the isotopic ratios are dissimilar from MORB or OIB. Lithospheric enrichment from subaccreted OIB components appears to be more significant than generally recognized.  相似文献   

19.
Pb, Nd and Sr isotopic compositions have been determined in lherzolite-xenolith-bearing alkali-basalts from the center of the African shield. The present data are very similar to those reported for ocean-island basalts and do not support the hypothesis of different mantle sources for alkali-basalts from continental and oceanic areas. From these observations and on the basis of data obtained for xenolith in kimberlite and for tholeiitic continental basalts one may infer the following terrestrial mantle structure: whereas oceanic tholeiites would originate in upper oceanic mantle, oceanic and continental alkali basalts would come from the lower mantle and tholeiitic continental basalts from the continental lithosphere.  相似文献   

20.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号