首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The mean latitude of prominence samples referring to one boundary of the polarity division line of the large-scale magnetic field is calculated on the basis of H charts in the period 1955–1982. It is shown that the magnetic field in that period had a latitude zonal structure. The boundaries of the latitude zones of the magnetic field had no regular equatorwards migration. They either oscillated near the mean boundaries at 0°, ±20°, ±40°, or migrated polewards.  相似文献   

2.
Hakamada  Kazuyuki 《Solar physics》1998,181(1):73-85
The coronal magnetic field (CMF) during Carrington rotation 1870 is inferred by using the so-called 'potential model' with the photospheric magnetic field observed at Kitt Peak. Magnetic field lines starting at areas restricted (90deg; ± 30deg; in longitude and 0deg; ± 20deg; in latitude) in both the photosphere and the source surface of 2.5 solar radii are traced to examine fine geometrical structures of the CMF. We found a well-ordered planar magnetic structure (PMS) near 90° Carrington longitude in the corona. The PMS consists of magnetic flux of negative polarity emanating from several small areas in the photosphere. The magnetic flux expands into a wide longitudinal angle in the source surface making a planar magnetic structure.  相似文献   

3.
Helical structures are generally associated with many eruptive solar prominences. Thus, study of their evolution in the solar atmosphere assumes importance. We present a study of a flare-associated erupting prominence of March 11, 1979, with conspicuous helically twisted structure, observed in H line center. We have attempted to understand the role played by twisted force-free magnetic fields in this event. In the analysis, we have assumed that the helical structures visible in H outline the field lines in which prominence tubes are embedded. Untwisting of observed prominence tubes and later, formation of open prominence structures provide evidence of restructuring of the magnetic field configuration over the active region during the course of prominence eruption. Temporal evolution of the force-free parameter is obtained for two main prominence tubes observed to be intertwined in a rope-like structure. Axial electric currents associated with the prominence tubes are estimated to be of the order of 1011 A which decreased with time. Correspondingly, it is estimated that the rate of energy release was 1028 erg s–1 during the prominence eruption.  相似文献   

4.
During several campaigns focused on prominences we have obtained coordinated spectral observations from the ground and from space. The SOHO/SUMER spectrometer allows us to observe, among others, the whole Lyman series of hydrogen, while the Hα line was observed by the MSDP spectrograph at the VTT. For the Lyman lines, non-LTE radiative-transfer computations have shown the importance of the optical thickness of the prominence – corona transition region (PCTR) and its relation to the magnetic field orientation for the explanation of the observed line profiles. Moreover, Heinzel, Anzer, and Gunár (2005, Astron. Astrophys. 442, 331) developed a 2D magnetostatic model of prominence fine structures that demonstrates how the shapes of Lyman lines vary, depending on the orientation of the magnetic field with respect to the line of sight. To support this result observationally, we focus here on a round-shaped filament observed during three days as it was crossing the limb. The Lyman profiles observed on the limb are different from day to day. We interpret these differences as being due to the change of orientation of the prominence axis (and therefore the magnetic field direction) with respect to the line of sight. The Lyman lines are more reversed if the line of sight is across the prominence axis as compared to the case when it is aligned along its axis.  相似文献   

5.
A normal-polarity prominence is modelled as a series of cool fibrils set in the hotter corona. Equations of magnetostatic equilibrium are solved and each fibril corresponds to a dip in the mgnetic field. The ratio of fibril width to interfibril spacing is dependent on the prominence-coronal temperature ratio and the ratio of plasma to magnetic pressure. The prominence mass is found to depend on the square of the magnetic field strength. When variations along the prominence are allowed in addition to those across the prominence, an apparently random pattern of fibrils results.  相似文献   

6.
In the dynamical model of quiescent prominences presented in this paper, it is assumed that the ever-changing velocity field and brightness of the fine structure is due to MHD turbulence driven by an Alfvén-wave flux from below. It is shown that these waves become highly non-linear and are dissipated over relatively short scales in prominence matter. For magnetic field strengths lower than those observed in quiescent prominences, no closed arch structure can exist with the physical parameters observed. For higher field strengths the conditions for the creation of turbulence are not fulfilled. The momentum gained by prominence matter in the dissipation process, is shown to be of the right order of magnitude to provide the supporting force against gravity. ‘Edge’ effects find a simple explanation within the framework of this hypothesis. In the upper regions of a prominence one result of the dissipation may be the formation of open magnetic configurations, in keeping with the presence of streamers connected with quiescent prominences. Observational tests are proposed and discussed.  相似文献   

7.
By applying a new method of processing daily full-disk magnetograms obtained at the Wilcox Solar Observatory at Stanford University, it has become possible to reveal the pattern of global E-W motions of field structures which appears to reflect large-scale convective plasma motions beneath the photosphere.Structures of E-W velocity of different sign extend from north to south, traversing the equator. The extent of the structures in longitude is 25°–45°, and the velocity amplitude reaches 0°.4–0°.5 day-1 (60–70 m s-1 at the equator). Boundaries of E-W flows of different sign correlate with strong, large-scale magnetic field hills. The lifetime of the velocity structures is comparable with that of magnetic field structures.  相似文献   

8.
Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence – corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, we deduce the dispersion relation for the magnetoacoustic slow and fast modes by assuming evanescentlike perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made to distinguish modes with fastlike or slowlike properties. Internal and external slow modes are governed by the prominence and coronal properties, respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.  相似文献   

9.
The present paper is devoted to the interpretation of linear polarization data obtained in 14 quiescent prominences with the Pic-du-Midi coronagraph-polarimeter by J. L. Leroy, in the two lines Hei D3 andH quasi-simultaneously. The linear polarization of the lines is due to scattering of the anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic field. The interpretation of the polarization data in the two lines is able to provide the 3 components of the magnetic field vector, and one extra parameter, namely the electron density, because the linear polarization of H is also sensitive to the depolarizing effect of collisions with the electrons and protons of the medium. Moreover, by using two lines with different optical thicknesses, namely Hei D3, which is optically thin, and H, which is optically thick ( = 1), it is possible to solve the fundamental ambiguity, each line providing two field vector solutions that are symmetrical in direction with respect to the line of sight in the case of the optically thin line, and which have a different symmetry in the case of the optically thick line.It is then possible to determine without ambiguity the polarity of the prominence magnetic field with respect to that of the photospheric field: 12 prominences are found to be Inverse polarity prominences, whereas 2 prominences are found to be Normal polarity prominences. It must be noticed that in 12 of the 14 cases, the line-of-sight component of the magnetic field vector has a Normal polarity (to the extent that the notion of polarity of a vector component is meaningful; no polarity can be derived in the 2 remaining cases); this may explain the controversy between the results obtained with methods based on the Hanle effect with results obtained through the Zeeman effect. A dip of the magnetic field lines across the prominence has been assumed, to which the optically thick H line is sensitive, and the optically thin Hei D3 line is insensitive.For the Inverse prominences, the average field strength is 7.5±1.2 G, the average angle,, between the field vector and the prominence long axis is 36° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 29° ± 20°, and the average electron density is 2.1 × 1010 ± 0.7 × 1010 cm–3. For the Normal prominences, the average field strength is 13.2±2.0 G, the average angle,, between the field vector and the prominence long axis is 53° ± 15°, the average angle, , between the outgoing field lines and the solar surface at the prominence boundary is 0° ± 20° (horizontal field), and the average electron density is 8.7 × 109 ± 3.0 × 109 cm–3.  相似文献   

10.
Observations of linear polarization in two resolved components of HeI D3 are interpreted using the Hanle effect to determine vector magnetic fields in thirteen prominences. As in all vector magnetic field measurements, there is a two-fold ambiguity in field direction that is symmetric to a 180° rotation about the line-of-sight. The polar angles of the fields show a pronounced preference to be close to 90° from the local solar radius, i.e., the field direction is close to horizontal. Azimuth angles show internal consistency from point to point in a given prominences, but because of the rotational symmetry, the fields may be interpreted, in most cases, as crossing the prominence either in the same sense as the underlying photospheric fields or in the opposite sense. An exceptionally well observed large prominence of approximately planar geometry exhibits no measurable change in the vector magnetic field either with height or with location along the prominence axis. A second well observed large prominence overlying a sharply curved magnetic neutral line, when interpreted assuming that the prominence field has the same sense as the photospheric field, shows a rotation in the azimuth angle of the field relative to the observer by about 150° and relative to the local plane of the prominence by about 65°. In the alternative interpretation in which the prominence field has the opposite sense of the photospheric field, the field still rotates by 150° relative to the observer but remains essentially constant with respect to the plane of the prominence. This prominence erupted shortly after the extended observations. One good quality observation during the course of the eruption gives a vector field fully consistent with the pre-eruption field in the same segment of the prominence.  相似文献   

11.
B. C. Low 《Solar physics》1982,75(1-2):119-131
We present a simple magnetostatic theory of the thin vertical filaments that make up the quiescent prominence plasma as revealed by fine spatial resolution H photographs. A class of exact equilibrium solutions is obtained describing a horizontal row of long vertical filaments whose weights are supported by bowed magnetic field lines. A free function is available to generate different assortments of filament sizes and spacings, as well as different density and temperature variations. The classic Kippenhahn-Schlüter solution for a long sheet without filamentary structures is a particular member of this class of solutions. The role of the magnetic field in supporting and thermally shielding the filament plasma is illustrated. It is found that the filament can have a sharp transition perpendicular to the local field, whereas the transition in the direction of the local field is necessarily diffuse. A consequence of the filamentary structure is that its support by the Lorentz force requires the electric current to have a component along the magnetic field. This electric current flowing into the rarefied region around the prominence can contain substantial energy stored in the form of force-free magnetic fields. This novel feature has implications for the heating and the disruption of prominences.  相似文献   

12.
Pécseli  Hans  Engvold  OddbjØrn 《Solar physics》2000,194(1):73-86
The nature of thin, highly inclined threads observed in quiescent prominences has puzzled solar physicists for a long time. When assuming that the threads represent truly inclined magnetic fields, the supporting mechanism of prominence plasma against gravity has remained an open issue. This paper examines the levitation of prominence plasma exerted by weakly damped MHD waves in nearly vertical magnetic flux tubes. It is shown that the wave damping, and resulting `radiation pressure', caused predominantly by ion-neutral collisions in the `cold' prominence plasma, may balance the acceleration of gravity provided the oscillation frequency is 2 rad s–1 (f0.5 Hz). Such short wave periods may be the result of small-scale magnetic reconnections in the highly fragmentary magnetic field of quiescent prominences. In the proposed model, the wave induced levitation acts predominantly on plasma – neutral gas mixtures.  相似文献   

13.
A preliminary discussion is presented of measurements of the polarization of the He i D3 multiplet in a quiescent prominence, observed with a wavelength-scanning Stokes polarimeter. For a series of 43 observations in the same prominence, the linear polarization of the major component of D3 lies primarily in the range 1 to 2% and of the wing component, the range 2 to 5%; the polarization vector angle lies primarily in the range 10–25° for the major component, and 25–35° for the other component. From a more limited data set, the polarization of both components is found to first increase as a function of height in the prominence, and then to decrease; the polarization angles of the major component vary in a random-like way with height, while the wing component shows a systematic change. The amount of polarization and the angle of polarization are governed by the Hanle effect. The collective effect of the group of lines at the peak of D3 evidently has a different sensitivity to the Hanle effect than does the wing component, thus yielding at least four independent measurements - two polarizations and two angles. With some redundancy, the vector magnetic field can then be established using the detailed theory of the Hanle effect. Since the wing component of D3 is a simple triplet, an initial estimate of the magnetic field strength and its horizontal orientation, 0, relative to the line of sight, is simply obtained. Examples of such calculations are presented.The National Center for Atmospheric Research is sponsored by the National Science Foundation.Operated by the Association of Universities for Research in Astronomy, Inc. under contract AST 78-17292 with the National Science Foundation.  相似文献   

14.
L. A. Plyusnina 《Solar physics》1985,102(1-2):191-201
For the period 1969–1975, a study has been made of the dependence of the interplanetary magnetic field structure on the distribution and evolutionary properties of solar magnetic fields. By direct comparison of a sequence of synoptic charts of the photospheric magnetic field with the interplanetary magnetic field, and by applying the method of correlation analysis, it is shown that to areas with an unstable polarity of the interplanetary magnetic field there correspond regions with a complicated inverse polarity line that forms either narrow gulfs and islands against a background of the dominant polarity, or bipolar magnetic regions and their clusters. At the time of reconstruction of the photospheric magnetic field the correlation between the photospheric and interplanetary magnetic field element distributions worsens. An asymmetry of the correlation between the interplanetary and photospheric magnetic field structures of different hemispheres is found. During the period of study, the interplanetary field structure shows a better correlation with the distribution of the photospheric magnetic field at middle and lower latitudes (0°–40°) of the southern hemisphere.  相似文献   

15.
Observations of the polar magnetic fields were made during the period July 3–August 23, 1968, with the Mt. Wilson magnetograph. The scanning aperture was 5 × 5. The magnetic field was found to be ofS polarity near the heliographic north pole and ofN polarity near the south pole. At lower latitudes the polarity was the opposite. The polarity reversal occurred at a latitude of about +70° in the north and -55° in the south hemisphere. This coincides with the position of the polar prominence zones at that time. The observations indicate that the average field strength at the south pole was well above 5 G.Synoptic charts of the magnetic fields have been plotted in a polar coordinate system for two consecutive solar rotations.  相似文献   

16.
Energy spectra and angular distributions of auroral electrons in the energy range 0.2–16 keV measured by the low-altitude polar orbiting satellite ESRO 4 are presented. The observations were made in the altitude range 800–1000 km near magnetic midnight. Energy-time spectrograms show inverted-V structures with peaked energy spectra. The inverted-V events are associated with anisotropic electron pitch angle distributions peaked at 0 deg. Frequently these distributions have a maximum also at 90 deg. Measurements of >43 keV electrons indicate that the acceleration probably occurs on closed field lines. It is found that many properties of the observed particle distributions can be explained by acceleration in an electric field parallel to the magnetic field lines, if trapping of particles under an increasing potential drop is included in the model.  相似文献   

17.
Béla Kálmán 《Solar physics》1991,135(2):299-317
The alignment of penumbral fibrils along the direction of the transverse magnetic field is good in the center of the solar disk, but deteriorates near the limb. This effect was studied on the basis of 15 vector magnetograms from various observatories in the period 1966–1984 for 5 sunspot groups. The results can be described with a simple geometrical model, where the magnetic field vectors and the penumbral fibrils lie in the same vertical plane, the inclination of the penumbra to the solar surface is 0–5°, and the elevation angle of the magnetic field vector is 40–50°. An adequate fit to observations was achieved only when an assumed uncertainty with 25° r.m.s. standard error was introduced in the angle measurements. The results are similar to earlier measurements for the chromosphere, although in the chromosphere the alignment of structures along the transverse magnetic field is better.  相似文献   

18.
Plunkett  S.P.  Vourlidas  A.  Šimberová  S.  Karlický  M.  Kotrč  P.  Heinzel  P.  Kupryakov  Yu.A.  Guo  W.P.  Wu  S.T. 《Solar physics》2000,194(2):371-391
Coronal mass ejections (CMEs) are frequently associated with erupting prominences near the solar surface. A spectacular eruption of the southern polar crown prominence was observed on 2 June 1998, accompanied by a CME that was well-observed by the LASCO coronagraphs on SOHO. The prominence was observed in its quiescent state and was followed throughout its eruption by the SOHO EIT and later by LASCO as the bright, twisted core of the CME. Ground-based H observations of the prominence were obtained at the Ondejov Observatory in the Czech Republic. A great deal of fine structure was observed within the prominence as it erupted. The prominence motion was found to rotate about its axis as it moved outward. The CME contained a helical structure that is consistent with the ejection of a magnetic flux rope from the Sun. Similar structures have been observed by LASCO in many other CMEs. The relationship of the flux rope to other structures in the CME is often not clear. In this event, the prominence clearly lies near the trailing edge of the structure identified as a flux rope. This structure can be observed from the onset of the CME in the low corona all the way out to the edge of the LASCO field of view. The initiation and evolution of the CME are modeled using a fully self-consistent, 3D axisymmetric, MHD code.  相似文献   

19.
Observations and analyses of two similar eruptive prominences on the north-east limb observed on 1980 April 27 at 0231 and 0517 UT, which are associated with the Boulder active region No. 2416 are presented. Both the eruptive prominences gave rise to white-light coronal transients as observed by C/P experiment of High Altitude Observatory on the Solar Maximum Mission. Type II and moving type IV radio bursts are reported in association with the first Hα eruptive prominence at 0231 UT. Both the Hα eruptive prominences showed pulse activity with a quasi-periodicity of about 2–4 min. We estimate a magnetic field in the eruptive prominence of about 100 G and a build-up rate ∼ 1026 ergs-1. The high build-up rate indicates that the shearing of the photospheric magnetic field, which fed the energy into the filament, was rapid. It is proposed that fast-moving Hα features must have initiated the observed coronal transients. From Hα, type II and coronal-transient observations, we estimate a magnetic field of 2.8 G at 1.9R⊙ from the disc centre, which agrees well with the earlier results.  相似文献   

20.
We investigate the formation and support of solar prominences in a quadrupolar magnetic configuration. The prominence is modeled as a current sheet with mass in equilibrium in a two-dimensional field. The model possesses an important property which is now thought to be necessary, namely that the prominence forms within the dip, rather than the dip being created by the prominence.The approach of two bipolar regions of the same sign gives a natural way to form a dip in the magnetic field in a horizontal band above the photospheric polarity inversion line. As the approach proceeds, the height of the dip region decreases but, in agreement with observations, a corridor, free of significant magnetic field, is needed in order to obtain a dip at low heights.Support is achieved locally just as for normal-polarity configurations, so the model avoids the strong self-pinching effect of several inverse-polarity configurations (such as the Kuperus and Raadu model). The role of the strong field component along the prominence axis, which is here modelled by a uniform field in that direction, may well be to provide the necessary thermal properties for prominence formation.The model thus has several attractive features which make it credible for inverse polarity prominences: (i) both the dip and the inverse orientation are naturally present; (ii) prominence formation is by converging rather than shearing motions, in agreement with observations; converging photospheric motions induce a horizontal upward motion in the filament; (iii) the orientation of the axial field, opposite to what is expected from differential rotation, is naturally accounted for; (iv) the observed relation between chromospheric and prominence magnetic field strengths is naturally reproduced; (v) the field configuration is more complex than a simple bipole, in agreement with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号