共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Falsaperla B. Behncke H. Langer M. Neri G. G. Salerno S. Giammanco E. Pecora E. Biale 《International Journal of Earth Sciences》2014,103(1):297-313
During the spring of 2007, paroxysmal activity occurred at the Southeast Crater of Mt. Etna, always associated with sharp rises in the amplitude of the volcanic tremor. Activity ranged from strong Strombolian explosions to lava fountains coupled with copious emission of lava flows and tephra. During inter-eruptive periods, recurrent seismic unrest episodes were observed in the form of temporary enhancements of the volcanic tremor amplitude, but they did not culminate in eruptive activity. Here, we present the results of an analysis of these inter-eruptive periods by integrating seismic volcanic tremor, in-soil radon, plume SO2 flux, and thermal data. SO2 flux and thermal radiation are envisaged as the “smoking gun,” and certifying that changes in seismic or radon data can be considered as volcanogenic. Short-term changes were investigated by pattern classification based on Kohonen maps and fuzzy clustering on volcanic tremor, radon, and ambient parameters (pressure and temperature). Our results unveil “failed” eruptions between February and April 2007 that are explained as ascending magma batches, which triggered repeated episodes of gas pulses and rock fracturing, but that failed to reach the surface. 相似文献
2.
Sandro Conticelli Sara Marchionni Davide Rosa Guido Giordano Elena Boari Riccardo Avanzinelli 《Contributions to Mineralogy and Petrology》2009,157(1):41-63
The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera
collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics
similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca.
400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera
Roccamonfina volcano. On the basis of new trace element and Sr–Nd–Pb isotope data, we show that the Roccamonfina shoshonitic
rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes.
The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte
Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised
by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at
Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788–18.851 for 206Pb/204Pb, 15.685–15.701 for 207Pb/204Pb, and 39.048–39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing
rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand,
shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks.
87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline samples have intermediate isotopic values between ultrapotassic plagioclase
leucitites and shoshonites, but the lowest levels of incompatible trace element contents. It is argued that ultrapotassic
magmas were generated in a modified lithospheric mantle after crustal-derived metasomatism. Interaction between the metasomatic
agent and lithospheric upper mantle produced a low-melting point metasomatised veined network. The partial melting of the
veins alone produced pre-caldera leucite-bearing ultrapotassic magmas. It was possibly triggered by either post-collisional
isotherms relaxation or increasing T°C due increasing heat flow through slab tears. Shoshonitic magmas were generated by further melting, at higher temperature,
of the same metasomatic assemblage with addition 10–20% of OIB-like astenospheric mantle material. We suggest that addition
of astenospheric upper mantle material from foreland mantle, flowing through slab tearing after collision was achieved.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
3.
Stefano Branca Mauro Coltelli Emanuela De Beni Jan Wijbrans 《International Journal of Earth Sciences》2008,97(1):135-152
We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through
submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial
plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the
Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward
the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the
southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle
del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity
was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was
controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily.
Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.
An erratum to this article can be found at 相似文献
4.
5.
Lucy E. McGee Christoph Beier Ian E. M. Smith Simon P. Turner 《Contributions to Mineralogy and Petrology》2011,162(3):547-563
The Auckland volcanic field is a Quaternary monogenetic basaltic field of 50 volcanoes. Rangitoto is the most recent of these
at ~500 year BP and may mark a change in the behaviour of the field as it is the largest by an order of magnitude and is unusual
in that it erupted magmas of alkalic then subalkalic basaltic composition in discrete events separated by ≤50 years. Major
and trace element geochemistry together with Sr–Nd and U-Th–Ra isotopes provides the basis for modelling the melting conditions
that brought about the eruption of two chemically different lavas with very little spatial or temporal change. Sr–Nd isotopes
suggest that the source for both eruptions is similar with a slight degree of heterogeneity. The basalts show high 230Th-excess compared with comparable continental volcanic fields. We show that the alkalic basalts give evidence for lower degrees
of partial melting, higher amounts of residual garnet, a longer melting column and lower melting and upwelling rates compared
with the subalkalic basalts. The low upwelling rates (0.1–1.5 cm/year) modelled for both magmas do not suggest a plume or
major upwelling in the mantle region beneath Auckland; therefore, we suggest localised convection due to relict movement from
the active subduction system situated 400 km to the southeast. A higher porosity for the initial alkalic basalt is based on
226Ra-excesses, suggesting movement of melt by two different porosities: the initial melt travelling in fast high porosity channels
from greater depths preserving a high 230Th-excess and the subsequent subalkalic magma travelling from a shallower depth through lower porosity diffuse channels preserving
a high 226Ra-excess; this creates a negative array in (226Ra/230Th) versus (230Th/238U) space previously only seen in mid ocean ridge Basalt data. This mechanism suggests the Auckland volcanic field may operate
by the presence of discrete melt batches that are able to move at different depths and speeds giving the field its erratic
spatial and temporal pattern of eruptions, a type of behaviour that may have implications for the evolution of other continental
volcanic fields worldwide. 相似文献
6.
Summary We present a detailed isotopic study of volcanic rocks emitted from Somma–Vesuvius volcano during three periods of interplinian activity: Protohistoric (3550 y B.P. to 79 A.D.), Ancient Historic (79 to 472 A.D.) and Medieval (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source.The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions of Sr and Nd. We suggest that reactions between magmas and fluids transported Pb and U, but not Sr. These data show that isotope mixing in the mantle is active at different times and scales. 相似文献
7.
This retrospective study focuses on the fine silicate particles (<62 µm in diameter) produced in a large eruption that was otherwise well studied. Fine particles represent a potential hazard to aircraft, because as simple particles they have very low terminal velocities and could potentially stay aloft for weeks. New data were collected to describe the fine particle size distributions of distal fallout samples collected soon after eruption. Although, about half of the mass of silicate particles produced in this eruption of ~1 km3 dense rock equivalent magma were finer than 62 µm in diameter, and although these particles were in a stratospheric cloud after eruption, almost all of these fine particles fell to the ground near (<300 km) the volcano in a day or two. Particles falling out from 70 to 300 km from the volcano are mostly <62 µm in diameter. The most plausible explanation for rapid fallout is that the fine ash nucleates ice in the convective cloud and initiates a process of meteorological precipitation that efficiently removes fine silicates. These observations are similar to other eruptions and we conclude that ice formation in convective volcanic clouds is part of an effective fine ash removal process that affects all or most volcanic clouds. The existence of pyroclastic flows and surges in the El Chichón eruption increased the overall proportion of fine silicates, probably by milling larger glassy pyroclasts. 相似文献
8.
《Gondwana Research》2014,25(2):775-796
The Damara Orogeny is a late Neoproterozoic to Cambrian (ca. 570–480 Ma) intracratonic event that affected the Kaoko Belt, the inland branch of the Damara orogen and the Gariep Belt in Namibia and South Africa. This study focuses on the Pan-African evolution of part of the Kaoko Belt between the Puros shear zone and the Village mylonite zone which consists of Mesoproterozoic migmatitic para- and orthogneisses with minor granulite and amphibolite. Pseudosection modeling combined with thermobarometric calculations indicate that the para- and orthogneisses equilibrated at about 670–800 °C and ca. 0.6–0.8 GPa. Some garnets display a pronounced bell-shaped Ca, HREE, Y and Sr zoning, flat zoning profiles of Mn and Fe and concave upward concentration profiles of Sm and Nd. Pressure–temperature estimates obtained on these garnets reveal similar temperatures of 700–750 °C but slightly higher pressures of ca. 0.9 GPa. The preservation of distinct major and trace element zoning in garnet and the existence of broadly similar (near prograde) Sm–Nd and Lu–Hf garnet–whole rock ages of ca. 525 Ma obtained on the same sample indicate an extremely fast cooling path. Retrograde conditions persisted until ca. 490 Ma indicating a slow, late stage near isobaric cooling path. The resulting clockwise P–T–t path is consistent with crustal thickening through continent–continent collision followed by post-collisional extension and suggests that the upper amphibolite to granulite facies terrain of the central Kaoko Belt formed initially in a metamorphic field gradient of ca. 25–35 °C km− 1 at moderately high pressures. 相似文献
9.
Qing-Bin Guan Bin Wang Xiong Wang Xing-An Wang Qiang Shi 《International Geology Review》2018,60(15):1883-1905
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic. 相似文献
10.
Siidra Oleg I. Nazarchuk Evgeny V. Agakhanov Atali A. Lukina Evgeniya A. Zaitsev Anatoly N. Turner Rick Filatov Stanislav K. Pekov Igor V. Karpov Gennady A. Yapaskurt Vasiliy O. 《Mineralogy and Petrology》2018,112(1):123-134
Mineralogy and Petrology - A new mineral hermannjahnite, ideally CuZn(SO4)2, was found in the sublimates of Saranchinaitovaya fumarole, Naboko scoria cone, where the recent Fissure Tolbachik... 相似文献
11.
Rogozhin E. A. Gorbatikov A. V. Kharazova Yu. V. Stepanova M. Yu. Nikolaev A. V. 《Doklady Earth Sciences》2016,471(1):1213-1216
Doklady Earth Sciences - A microseismic sounding profile was made along the Baksan River valley from the eastern summit of Elbrus volcano to the southern edge of town Tyrnyauz. The geological... 相似文献
12.
The Mercara Shear Zone is sandwiched between the Western Dharwar Craton and the Coorg Block in the Southern Granulite Terrain of India, and is marked by steep gravity gradients interpreted to suggest the presence of underplated high-density material in the lower crust. Here we present geological, petrological and geochemical data, together with zircon U–Pb ages and Lu–Hf isotopes from a suite of metaigneous (TTG-related gneisses, charnockite, metagabbro, mafic granulite) and metasedimentary (quartz mica schist, khondalite, garnet biotite gneiss, kyanite–sillimanite bearing metapelite) rocks from this zone. Geochemical data on the magmatic suite suggests formation through subduction-related arc magmatism, whereas the metasediments represent volcano-sedimentary trench sequences. Phase equilibrium modeling of mafic granulites from the Mercara Shear Zone suggests P–T range of 10–12 kbar at 700 °C to 900 °C. The zircon data yield weighted mean 207Pb/206Pb ages of 3229 ± 80 Ma for metagabbro, 3168 ± 25 Ma for the charnockite, and 3181 ± 20 Ma for the mafic granulite. Ages ranging from 3248 ± 28 Ma to 3506 ± 26 Ma were obtained from zircons in the kyanite/sillimanite bearing metapelite, 3335 ± 44 Ma from khondalite, 3135 ± 14 Ma from garnet biotite gneiss, 3145 ± 17 Ma to 3292 ± 57 Ma from quartz mica schist and 3153 ± 15 Ma to 3252 ± 36 from TTG gneiss. The tightly defined ages of 3.1 to 3.2 Ga from igneous zircons in the magmatic suite suggest prominent Mesoarchean convergent margin magmatism. The timing of high grade metamorphism as constrained from metamorphic overgrowths in zircons is ca. 3.0 Ga which might mark the collisional event between the Western Dharwar Craton and the Coorg Block. Hf isotope features suggest magma derivation mostly from juvenile sources and the Lu–Hf model ages indicate that the crust building might have also involved partial recycling of basement rocks as old as ca. 3.8 Ga. Our study defines the Mercara Shear Zone as a terrane boundary, and possible Mesoarchean suture along which the Coorg Block was accreted to the Western Dharwar Craton. The accretion of these continental fragments might have coincided with the birth of the oldest supercontinent “Ur”. 相似文献
13.
Juraj Majzlan Tamara Ðorđević Uwe Kolitsch Jürg Schefer 《Mineralogy and Petrology》2010,100(3-4):241-248
Using single-crystal X-ray diffraction at 293, 200 and 100 K, and neutron diffraction at 50 K, we have refined the positions of all atoms, including hydrogen atoms (previously undetermined), in the structure of coquimbite ( $ P {\bar 3}1c $ , a?=?10.924(2)/10.882(2) Å, c?=?17.086(3) / 17.154(3) Å, V?=?1765.8(3)/1759.2(5) Å3, at 293 / 50 K, respectively). The use of neutron diffraction allowed us to determine precise and accurate hydrogen positions. The O–H distances in coquimbite at 50 K vary between 0.98 and 1.01 Å. In addition to H2O molecules coordinated to the Al3+ and Fe3+ ions, there are rings of six “free” H2O molecules in the coquimbite structure. These rings can be visualized as flattened octahedra with the distance between oxygen and the geometric center of the polyhedron of 2.46 Å. The hydrogen-bonding scheme undergoes no changes with decreasing temperature and the unit cell shrinks linearly from 293 to 100 K. A review of the available data on coquimbite and its “dimorph” paracoquimbite indicates that paracoquimbite may form in phases closer to the nominal composition of Fe2(SO4)3·9H2O. Coquimbite, on the other hand, has a composition approximating Fe1.5Al0.5(SO4)3·9H2O. Hence, even a “simple” sulfate Fe2-x Al x (SO4)3·9H2O may be structurally rather complex. 相似文献
14.
Volcán Popocatépetl has explosively erupted in Plinian style at least five times in the last 23,000 years. Extreme deviations in composition and the occurrence of dissolution features in plagioclase and pyroxene, and the occasional presence of xenocrysts of Cr-rich Fe–Ti oxides and Mg-rich olivines and pyroxenes indicate that magma mixing has been a major process affecting the magmatic system. The nearly invariant composition of the erupted products (andesitic–dacitic) suggests, however, that mixing is not acting alone and must be balanced by assimilation and/or crystallization. To investigate the magmatic processes that have modified the Plinian magmas, textural and compositional variations and growth rates in plagioclase were used to approximate the frequency of mixing events affecting each magma. Systematic analysis of Sr, Nd, and Pb isotopes was carried out on plagioclase, pyroxene, and pumice matrix glass to constrain the extent of assimilation of upper crustal rocks. Additionally, a series of phase equilibrium experiments were carried out to constrain the depth where such mixing and assimilation occurred. We find that magma was stored at one of two different depths beneath Popocatépetl with magma mixing acting in both reservoirs. Mixing frequency and the relative impact on mineral compositions and textures has varied with time. Assimilation of calcareous rocks underneath Popocatépetl has not been pervasive and does not contribute significantly to the evolution of the Plinian magmas. The similar compositions of magmas with diverse mixing histories suggest that fractional crystallization, and possibly assimilation of deep crust, takes place at depth and that intermediate magmas ascend into the upper crust already differentiated. 相似文献
15.
Roberto Oyarzun Paloma Cubas Pablo Higueras Javier Lillo Willians Llanos 《Environmental Geology》2009,58(4):761-777
The Rodalquilar mineral deposits (SE Spain) were formed in Miocene time in relation to caldera volcanic episodes and dome
emplacement phenomena. Two types of ore deposits are recognized: (1) the El Cinto epithermal, Au–As high sulphidation vein
and breccia type; and (2) peripheral low sulphidation epithermal Pb–Zn–Cu–(Au) veins. The first metallurgical plants for gold
extraction were set up in the 1920s and used amalgamation. Cyanide leaching began in the 1930s and the operations lasted until
the mid 1960s. The latter left a huge pile of ~900,000–1,250,000 m3 of abandoned As-rich tailings adjacent to the town of Rodalquilar. A frustrated initiative to reactivate the El Cinto mines
took place in the late 1980s and left a heap leaching pile of ~120,000 m3. Adverse mineralogical and structural conditions favoured metal and metalloid dispersion from the ore bodies into soils and
sediments, whereas mining and metallurgical operations considerably aggravated contamination. We present geochemical data
for soils, tailings and wild plant species. Compared to world and local baselines, both the tailings and soils of Rodalquilar
are highly enriched in As (mean concentrations of 950 and 180 μg g−1, respectively). Regarding plants, only the concentrations of As, Bi and Sb in Asparagus horridus, Launaea arborescens, Salsola genistoides, and Stipa tenacissima are above the local baselines. Bioaccumulation factors in these species are generally lower in the tailings, which may be
related to an exclusion strategy for metal tolerance. The statistical analysis of geochemical data from soils and plants allows
recognition of two well-differentiated clusters of elements (As–Bi–Sb–Se–Sn–Te and Cd–Cu–Hg–Pb–Zn), which ultimately reflect
the strong chemical influence of both El Cinto and peripheral deposits mineral assemblages. 相似文献
16.
《International Geology Review》2012,54(2):158-184
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar. 相似文献
17.
Inga Sevastjanova Benjamin Clements Robert Hall Elena A. Belousova William L. Griffin Norman Pearson 《Gondwana Research》2011,19(4):1024-1039
The Malay Peninsula lies on two continental blocks, Sibumasu and East Malaya, which are intruded by granitoids in two provinces: the Main Range and Eastern. Previous models propose that Permian–Triassic granitoids are subduction-related and syn-to post-collisional. We present 752 U–Pb analyses that were carried out on zircons from river sands in the Malay Peninsula; of these, 243 grains were selected for Hf-isotope analyses. Our data suggest a more complex Sibumasu–East Malaya collision history. 176Hf/177Hfi ratios reveal that Permian–Triassic zircons were sourced from three magmatic suites: (a) Permian crustally-derived granitoids, (b) Early-Middle Triassic granitoids with mixed mantle–crust sources, and (c) Late Triassic crustally-derived granitoids. This suggests three Permian–Triassic episodes of magmatism in the Malay Peninsula, two of which occurred in the Eastern Province. Although the exact timing of the Sibumasu–East Malaya collision remains unresolved, current data suggest that it occurred before the Late Triassic, probably in Late Permian–Early Triassic. Our data also indicate that Sibumasu and East Malaya basements are chronologically heterogeneous, but predominantly of Proterozoic age. Some basement may be Neoarchaean but there is no evidence for basement older than 2.8 Ga. Finally, we show that Hf-isotope signatures of Triassic zircons can be used as provenance indicators. 相似文献
18.
《International Geology Review》2012,54(6):556-582
The Yandangshan syenite is a representative Late Cretaceous igneous pluton cropping out in SE China. U–Pb zircon dating using LA‐ICP‐MS yielded a crystallization age of 98±1 Ma for the syenite. Petrographically and geochemically of shoshonitic affinity, it is enriched in LREE and LILE, and has a pronounced Nb–Ta trough in the primitive mantle‐normalized trace element spider diagram. Zircon ?Hf(t) values vary from ?3.04 to ?7.71, displaying a unimodal distribution. The syenite also has high Sr [(87Sr/86Sr) i = 0.7086–0.7089], low Nd [?Nd(t) = ?6.57 to ?7.64] isotopic ratios, plotting in the enriched mantle field on an ?Nd(t) versus (87Sr/86Sr) i diagram. We propose that the Yandangshan syenite was generated by pyroxene‐dominated high‐pressure fractional crystallization from basaltic magma that was derived from an enriched mantle source. Although coexisting Yandangshan rhyolites have Sr–Nd isotopic compositions similar to the Yandangshan syenite, they were not derived from the same source. Instead, the rhyolitic magma was produced by partial melting of crustal materials as a result of the underplating of basaltic magma. The crust‐like Sr–Nd–Hf isotopic signature of the Yandangshan syenite is ascribed to mantle sources that were enriched by subducted sediments. Formation of Yandangshan syenite may represent roll‐back of the subducting palaeo‐Pacific plate and migration of the arc front to the Yandangshan area at ~98 Ma. 相似文献
19.
《Chemie der Erde / Geochemistry》2022,82(3):125902
The volcanic rock system of the Miaoling Formation contains the main ore-bearing rocks of two volcanogenic massive sulfide (VMS)-type deposits in the Yanbian area of NE China. Investigation of the VRSMF is needed to better understand the formation of these VMS-type deposits and the tectonic evolution of the Yanbian area. To determine the petrogenesis, material sources, and formation age of the VRSMF, and elucidate its late Paleozoic tectonic evolution and metallogenic significance, this paper presents new petrological, geochronological, geochemical, whole-rock Sr–Nd and in situ zircon Hf isotopic data for the VRSMF. The VRSMF is composed of marine carbonate, intermediate–felsic volcanic rocks (andesite–trachyandesite–dacite) and pyroclastic rocks. Laser-ablation–inductively coupled plasma–mass spectrometry zircon U–Pb dating gives an eruption age of ca. 265 Ma for the pyroclastic rocks in the VRSMF. These rocks are classified as low- to medium-K calc-alkaline series. They are characterized by enrichments in large-ion lithophile elements (e.g., K, Rb, and Ba) and light rare earth elements, and depletions in high field-strength elements (e.g., Nb, Ta, and Ti) and heavy rare earth elements, showing affinity to igneous rocks formed in arc-related tectonic settings. These features, together with homogeneous zircon εHf(t) values of 10.9–15.7 and depleted Sr–Nd isotopic compositions [εNd(t) values of 2.4–5.0], suggest that the parental magma was derived from the partial melting of depleted mantle that had been metasomatized by subduction-related fluids. These results, along with findings of regional geological investigations, suggest that the formation of the VRSMF was related to subduction of the Paleo-Asian oceanic plate during the middle Permian. The VMS-type mineralization in the Hongtaiping and Dongfengnanshan deposits is interpreted to have formed in a bimodal–felsic setting in a back-arc extensional tectonic environment. 相似文献
20.
The Outokumpu district within the North Karelia Schist Belt in eastern Finland hosts a number of Cu–Co–Zn–Ni–Ag–Au sulfide deposits that are associated with Palaeoproterozoic ophiolitic metaserpentinites derived from depleted mantle peridotites that were subsequently tectonically interleaved with allochthonous metaturbidites. The metaperidotites have been extensively metasomatized to quartz–carbonate–calc–silicate rocks of the Outokumpu assemblage. The Outokumpu area has been affected by a multiple-phase tectonic history comprising various phases of folding and shearing followed by several faulting events. Future exploration has to expand the search into deeper areas and requires knowledge of the subsurface geology. In order to unravel the complex structure 3D geologic models of different scales have been built using a variety of information including geological aeromagnetic and gravity maps, digital terrain models, and mine cross sections as well as data like drill core logs combined with observations from underground mine galleries, structural measurements, aeromagnetic data, and seismic surveys. For crustal structures, data from seismic surveys lines have been reprocessed for our purpose. Both deposit-scale and regional-scale models allow the reconstruction of a sequence of structural events. The mined ore has formed during remobilization of a proto-ore and is closely related to shear zones (thrusts) that truncate the Outokumpu assemblage. Later faults dismembered the ore explaining the variable depth of the different ore bodies along the Outokumpu ore zone. On larger scale at least four km-scale thrust sheets, separated by major listric shear zones can be identified in the ore belt, which are internally further imbricated by subordinate shear zones. These thrusts separate a number of lens-shape metaperidotite bodies that are probably surrounded by Outokumpu assemblage rocks. Thrust stacking was followed by at least three stages of faulting that divided the ore belt into fault-bounded blocks with heterogeneous displacements: (i) faulting along NW-dipping faults with unresolved kinematics, (ii) reverse faulting along c. 50°–60° SE-dipping faults, and (iii) SW–NE to SSW–NNE striking faults which may have formed at an earlier stage and have been reactivated.The specific Outokumpu alteration assemblage around metaperidotite bodies combined with shear zones acting as path ways for fluids are the main vectors to mineralization. Seismic reflection data do not provide a simple tool to directly detect the sites of Outokumpu assemblage bodies at depth but they identify strong reflector zones which are characteristic for though not exclusive to the assemblage, shear zones can be recognized as curved dislocations in the seismic lines. Our study shows that 3D modeling, when used in combination with surface geology and other geophysical data and good knowledge about the structural evolution clearly improves the interpretation of reflectors and enables the identification of strong reflector packages as Outokumpu assemblage that, due to absent geological control, have first been mapped as “unknown reflector”. It thus enhances the chances for locating potentially economic horizons at depth and to delineate target areas for detailed exploration. 相似文献