首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

2.
Shallowly buried archaeological sites are particularly susceptible to surface and subsurface disturbance processes. Yet, because cultural deposition often operates on short time scales relative to geologic deposition, vertical artifact distributions can be used to clarify questions of site formation. In particular, patterns in artifact distributions that cannot be explained by occupation histories must be explained by natural processes that have affected sites. Buried only 10–50 cm beneath the ground surface for 10,450 14C yr, the Folsom component at Barger Gulch Locality B (Middle Park, Colorado) exhibits many signs of post‐depositional disturbance. Through examination of variation in the vertical distribution of the artifact assemblage, we are able to establish that only a Folsom component is present. Using vertical artifact distributions, stratigraphy, and radiocarbon dating, we are able to reconstruct the series of events that have impacted the site. The Folsom occupation (˜10,450 14C yr B.P.) was likely initially buried in a late‐Pleistocene eolian silt loam. Erosion brought the artifacts to rest on a deflation surface at some time prior to 9400 14C yr B.P. A mollic epipedon formed in sediments that accumulated between 9400 and 7000 14C yr B.P. Some time after 5200 14C yr B.P., this soil was partially truncated, and artifacts that had previously dispersed upward created a secondary lag at its upper contact. This surface was buried again and artifact dispersal continued. © 2005 Wiley Periodicals, Inc.  相似文献   

3.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

4.
Deposits of the Tamanduá River contain evidence for four major paleohydrologic stages in the last 33,000 years. A wet period between 33,000 and 20,00014C yr B.P. produced a high water table that allowed organic-rich deposition in the Tamanduá valley. A dry interval 17,000-10,00014C yr B.P. produced sandy deposits of braided channels and alluvial fans. River aggradation during this period probably resulted from a high sediment load promoted by intense slope erosion and from flash floods. A wet period after 10,000 and before 600014C yr B.P. was marked by reduced slope erosion and by high discharge that led to erosion of the valley fill. During that time forests developed widely in Brazil. A drier climate after 600014C yr B.P. caused a reduction of discharge but allowed a high water table to be maintained.  相似文献   

5.
Sedimentological, malacological, and pollen analyses from 14C-dated alluvial sections from the Luján River provide a detailed record of environmental changes during the Holocene in the northeastern Pampas of Argentina. From 11,200 to 9000 14C yr B.P., both sedimentary and biological components suggest that the depositional environment was eutrophic, alkaline, and freshwater to brackish shallow water bodies without significant water circulation. During this time, bioclastic sedimentation was dominant and the shallow water bodies reached maximum development as the climate became more humid, suggesting an increase in precipitation. Short-term fluctuations in climate during the last stage of this interval may have been sufficient to initiate changes in the water bodies, as reduction of the volume alternated with periods of flooding. The beginning of the evolution of shallow swamps in the wide floodplain or huge wetlands was contemporaneous with a sea level lower than the present one. From 9000 and 7000 14C yr B.P., mesotrophic, alkaline, brackish, probably anoxic swamps existed. Between 7000 and 3000 14C yr B.P., anoxic calcareous swamps were formed, with subaerial exposure and development of the Puesto Berrondo Soil (3500-2900 14C yr B.P.). A trend to a reduction of water bodies is recorded from 9000 to ca. 3000 14C yr B.P., with a significant reduction after ca. 7000 14C yr B.P. A shift to subhumid-dry climate after 7000 14C yr B.P. appears to be the main cause. During this time, an additional external forcing toward higher groundwater levels was caused by Holocene marine transgression causing changes in the water bodies levels. The climate became drier during the late Holocene (ca. 3000 yr B.P.), when clastic sedimentation increased, under subhumid-dry conditions. Flood events increased in frequency during this time. From ca. A.D. 1790 to present, the pollen record reflects widespread disturbance of the vegetation during the European settlement.  相似文献   

6.
Palynologic and stratigraphic data from Laguna Tahui (42°50′S, 73°30′W) indicate cool-temperate and humid conditions there between 14,000 and 10,000 14C yr B.P., followed by warmer and drier-than-present conditions between 10,000 and 7000 14C yr B.P., and subsequent cooling and rise in precipitation over the last 5800 14C yr. The thermophilous Valdivian trees Eucryphia cordifolia and Caldcluvia paniculata reached their maximum abundance during the early Holocene warm-dry phase (10,000-7000 14C yr B.P.), followed by a rise in lake levels and reexpansion of North Patagonian conifers starting at 7000 and 5800 14C yr B.P., respectively. Variations in the stratigraphic and geographic distribution of temperate rainforests in southern Chile suggest multimillennial trends in temperature and westerly activity, which are spatially and temporally coherent with paleoclimate records from neighboring regions. Climate variability at millennial and submillennial time scales may account for the establishment and persistence of fine-scale mosaics of Valdivian and North Patagonian rainforest species in low- to mid-elevation communities since ∼5800 14C yr B.P.  相似文献   

7.
Sedimentological, faunal, and archaeological investigations at the Sunshine Locality, Long Valley, Nevada reveal a history of human adaptation and environmental change at the last glacial–interglacial transition in North America's north-central Great Basin. The locality contains a suite of lacustrine, alluvial, and eolian deposits associated with fluvially reworked faunal remains and Paleoindian artifacts. Radiocarbon-dated stratigraphy indicates a history of receding pluvial lake levels followed by alluvial downcutting and subsequent valley filling with marsh-like conditions at the end of the Pleistocene. A period of alluvial deposition and shallow water tables (9,800 to 11,000 14C yr B.P.) correlates to the Younger Dryas. Subsequent drier conditions and reduced surface runoff mark the early Holocene; sand dunes replace wetlands by 8,000 14C yr B.P. The stratigraphy at Sunshine is similar to sites located 400 km south and supports regional climatic synchroneity in the central and southern Great Basin during the terminal Pleistocene/early Holocene. Given regional climate change and recurrent geomorphic settings comparable to Sunshine, we believe that there is a high potential for buried Paleoindian features in primary association with extinct fauna elsewhere in the region yet to be discovered due to limited stratigraphic exposure and consequent low visibility.  相似文献   

8.
Valleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite-Cu-Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite-dolomite-Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.  相似文献   

9.
10.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

11.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

12.
In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Río Cóndor valley three subsequent advances have been identified.  相似文献   

13.
Microlithic artifacts, some found in situ, are abundant in the Zhongba archaeological site in southwestern Tibet. The site environment consists of extant wetlands and paleo‐wetland deposits found in depressions between sand dunes derived from the Yarlung Tsangpo floodplain. Constraining 14C dates from wetland vegetation and shell from one site fall between ca. 6600–2600 cal. yr B.P., while a second site is dated 3400–1200 cal. yr B.P. A significant and variable 14C reservoir effect—up to 1400 14C yr—limits these ranges to terminus post quem constraints. The in situ artifacts are supplemented by surface collections fully characterizing raw material and typological variability for each site. Raw material found at Zhongba is chert and chalcedony likely sourced from Cretaceous bedrock near the site. Typologically, microblades are nongeometric and are derived from conical and wedge‐shaped cores similar to those identified in the Qinghai Lake Basin and the Chang Tang Nature Reserve of similar or greater age. The later occupation period at Zhongba is broadly contemporaneous with sites on the Qinghai‐Tibet Plateau containing bronze and iron artifacts, indicating microlithic technology remained an important tool‐making strategy in western Tibet late into the protohistoric period.  相似文献   

14.
Geoarchaeological investigations at the Clovis type site, Blackwater Locality No. 1, in 1983 and 1984 included core drilling, archaeological test excavations, stratigraphic profiling, sedimentary analyses, and radiocarbon dating. Six lines of core holes transverse to the outlet channel clearly defined the subsurface configuration and stratigraphy of the prehistoric spring run. Pieces of large animal bone from units B, C, D, and E that elsewhere in the site contain Paleoindian artifacts suggest occurrences of additional buried sites along the ancient spring run. Four Paleoindian projectile points recovered during archaeological testing confirm these prospects. The Clovis type site, located in an abandoned gravel pit, is in a natural depression initially occupied by a late Pleistocene lake. After breaching of the depression by overflow or sapping, it became a springhead and was enlarged by slumping and slopewash. Detailed stratigraphic profiling of the south wall of the abandoned gravel pit provided precise stratigraphic control for sediment sampling and radiocarbon dating, and revealed more complex microstratigraphy and facies relationships than heretofore known for the site. The interfingering of dune facies around the depression with lacustrine and spring-laid facies within it aid paleoclimatic interpretation. Deflational contacts within the depression appear to correlate with adjacent wedges of dune sand reflecting relatively arid intervals. Between these arid episodes occur intervals of increased ground water level attended initially by deposition of spring-laid sands of unit B during the late Pleistocene (13,000–11,500 yr B.P.). As the water table rose following a period of severe deflation, slumping and gravity flow deposited clayey sand, Unit C, on the floor of the blowout between 11,500 and 11,000 yr B.P. During this time Clovis people first appeared at the site. After another brief period of deflation, a lake rose causing sand of Unit D0 to be washed in from shore followed by deposition of diatomities, units D1 and D2. These were separated by a brief influx of eolian sand, unit D2z. Between 10,800 and 10,000 yr B.P. outflow from the lake was reduced by accumulation of eolian sand in the outlet while Folsom people and later Agate Basin people arrived to hunt bison during this time. Cody complex people appeared during and after a brief erosional episode that preceded deposition of eolian silt and sand of units E and F from 10,000 to 8000 yr B.P. Eolian deposition during post-Folsom time converted the pond to a wet meadow and eventually, during Cody time, to a grassy swale. Some of these deposits were blown out during the Altithermal arid period (ca. 8000-5000 yr B.P.), a time when prehistoric Archaic peoples excavated wells in the floor of the depression. Subsequent eolian activity has resulted in deflation and dune migration during the late Holocene. The best prospects for Paleoindian finds are along the buried outlet south of the south wall and in early Holocene dune sands on the uplands around the depression. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.  相似文献   

16.
Holocene environments have been reconstructed by multiproxy studies of an 850-cm-long core from Rio Curuá dating to >8000 14C yr B.P. The low-energy river lies in the eastern Amazon rain forest in the Caxiuanã National Forest Reserve, 350 km west of Belém in northern Brazil. Sedimentological, mineralogical, and geochemical dates demonstrate that the deposits correspond to two different environments, sediments of an active river before 8000 14C yr B.P. and later a passive river system. The pollen analytical results indicate four different local and regional Holocene paleoenvironmental periods: (1) a transition to a passive fluvial system and a well-drained terra firme (unflooded upland) Amazon rain forest with very limited development of inundated forests (várzea and igapó) (>7990–7030 14C yr B.P.); (2) a sluggish river with a local Mauritia palm-swamp and similar regional vegetation, as before (7030–5970 14C yr B.P.); (3) a passive river, forming shallow lake conditions and with still-abundant terra firme forest in the study region (5970–2470 14C yr B.P.); and (4) a blocked river with high water levels and marked increase of inundated forests during the last 2470 14C yr B.P. Increased charcoal during this last period suggests the first strong presence of humans in this region. The Atlantic sea level rise was probably the major factor in paleoenvironmental changes, but high water stands might also be due to greater annual rainfall during the late Holocene.  相似文献   

17.
The fossil remains of 43 bowhead whales were mapped on the raised beaches of western Wollaston Peninsula, Victoria Island, Canadian Arctic, near the historic summer range limit of the Bering Sea stock in the Beaufort Sea. The elevations and radiocarbon ages of the remains demonstrate that the bowhead ranged commonly into the region following the submergence of Bering Strait at ca. 10,000 14C yr B.P. until ca. 8500 14C yr B.P. During the same interval, bowheads ranged widely from the Beaufort Sea to Baffin Bay. Subsequently, no whales reached Wollaston Peninsula until ca. 1500 14C yr B.P. Late Holocene populations evidently were small, or occupations were brief, in comparison to those of the early Holocene. Although the late Holocene recurrence may relate to the expansion of pioneering Thule whalers eastward from Alaska, there are few Thule sites and limited evidence of Thule whaling in the area surveyed to support this suggestion.  相似文献   

18.
Glaciations of the West Coast Range,Tasmania   总被引:1,自引:0,他引:1  
Geomorphic, stratigraphic, palynologic and 14C evidence indicates that the West Coast Range, Tasmania, was glaciated at least three times during the late Cenozoic. The last or Margaret Glaciation commenced after 30,000 yr B.P., culminated about 19,000 yr B.P., and ended by 10,000 yr B.P. During this period a small ice cap, ca. 250 m thick, and cirque and valley glaciers covered 108 km2. The glacial deposits show little chemical weathering or erosional dissection. The snow line ranged from 690 to 1000 m with an average of 830 m for the ice cap. Mean temperature was 6.5°C below the present temperature. During the preceding Henty Glaciation a 300- to 400-m-thick ice cap and outlet glaciers exceeded 1000 km2. The glacial deposits are beyond 14C assay. They are more weathered chemically and more dissected than Margaret age deposits, and the degree suggests a pre-last interglaciation age (> 130,000 yr B.P.). The snow line of the ice cap lay at 740 m, and annual temperature was reduced by 7°C. Ice of the earliest Linda Glaciation slightly exceeded that of the Henty Glaciation but had a similar distribution. The glacial deposits are intensely weathered, have reversed magnetization, and overlie a paleosol containing pollen of Tertiary type. An early Pleistocene or Tertiary age is indicated.  相似文献   

19.
In order to better understand modern human behavioral variability in Hokkaido, Japan, we consider the geoarchaeology of the Kamihoronai‐Moi site in terms of its geochronology, stratigraphy, depositional environments, and post‐depositional disturbances. A Paleolithic component is stratigraphically situated between the Eniwa‐a (15,000–17,000 14C yr B.P.) and the Tarumae‐d (8000–9000 14C yr B.P.) tephras. Moreover, six AMS 14C ages on charcoal from a Pleistocene‐aged hearth feature are between 14,400 and 14,800 14C yr B.P. Quantitative examinations of patterns in artifact distributions show a low degree of vertical and horizontal displacement of chipped‐stone artifacts, suggesting that post‐depositional movement of the cultural material was insufficient to disrupt the original pattern of artifact distribution. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The study place is in the Barreirinhas region, Maranhão State, northeastern Brazil. A vegetation transect of 78 km was studied among four vegetation types: Restinga (coastal vegetation), Cerrado (woody savanna), Cerradão (dense woody savanna), and Forest, as well as three forested sites around Lagoa do Caçó, located approximately 10 km of the transect. Soil profiles in this transect were sampled for δ13C analysis, as well as buried charcoal fragments were used for 14C dating. The data interpretation indicated that approximately between 15,000 and ∼9000 14C yr B.P., arboreal vegetation prevailed in the whole transect, probably due to the presence of a humid climate. Approximately between ∼9000 and 4000-3000 14C yr B.P., there was the expansion of the savanna, probably related to the presence of drier climate. From ∼4000-3000 14C yr B.P. to the present, the results indicated an increase in the arboreal density in the area, due to the return to a more humid and probably similar climate to the present. The presence of buried charcoal fragments in several soil depths suggested the occurrence of palaeofires during the Holocene. The vegetation dynamic inferred in this study for northeastern Brazil is in agreement with the results obtained in areas of Amazon region, based on pollen analysis of lake sediments and carbon isotope analysis of soil organic matter (SOM), implying than similar climatic conditions have affected these areas during the late Pleistocene until the present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号