首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tectonophysics》1987,138(1):45-53
In this paper, the seismic pattern in Northern China from 30 ° to 42 ° N latitude and 104 ° to 125 ° E longitude, and the characteristics of the epicentral distribution before large events are presented. The results suggest that:
  • 1.(1) the earthquakes in the region are mainly located in the orthogonal curvilinear network formed by the seismic belts;
  • 2.(2) the larger earthquakes (M ⩾6) occurred mainly in the nodal regions of this grid:
  • 3.(3) the strike of the fracture planes of the earthquakes coincided with the directions of the seismic belts;
  • 4.(4) the pattern of medium strong earthquakes (M ⩾ 4.7) prior to thirteen large earthquakes (M⩾ 7) are analysed to be of three types:
    • 4.1.(a) mainly arranged along the two intersecting belts,
    • 4.2.(b) randomly distributed,
    • 4.3.(3) forming seismic gaps.
A theoretical basis and rules for drawing the orthogonal grid is presented, and an idea for the prediction of the sites of future earthquakes in Northern China is suggested.  相似文献   

2.
《Engineering Geology》2001,59(1-2):1-49
Geologic concepts and scientific-technical guidance for the planning-design and construction of engineered works was recognized in Europe by the 1800s and by the early 1900s in North America. This early geologic knowledge and experience provided the rudimentary principles that guided practitioners of the 19th century in serving the emerging projects in western United States. Case studies review the scientific-technical lessons learned and the legacy of geologic principles established in the planning and construction of major civil, mining, and military engineered works in the western states. These contributions to GeoScience knowledge and engineering geology practice include:
  • •Tunnels and aqueducts across active fault zones, beneath young volcanic features, groundwater-charged faults, and land subsidence mitigation.
  • •Controversial foundation design, Folsom and Auburn dams, Golden Gate Bridge.
  • •Protective underground construction chambers, safety dependent geologic setting.
  • •Geologic mapping as database management leasing, maintenance railroad trackway.
  • •Causeway Great Salt Lake, geo-risks calculated, mitigated ‘as-constructed’.
  • •Nuclear powerplants seismic design.
  • •Urban Land-Use, on-going processes, acceptable geo-risks.
  • •Dwelling Insurance, insuree's responsibilities.
  • •Selecting technique/method to mitigate risk, preferably based on extensive database, evaluation of characteristics and historical origin adverse features/conditions that constitute a geo-risk.
  相似文献   

3.
《Tectonophysics》1987,138(1):79-92
Analysis of the space-time patterns of seismicity in the Himalaya plate boundary has established the existence of three seismic gaps:
  • 1.(1) The “Kashmir gap” lying west of the 1905 Kangra earthquake;
  • 2.(2) the “Central gap”, situated between the 1905 Kangra and the 1934 Bihar earthquakes;
  • 3.(3) the “Assam gap” between the 1897 and 1950 Assam earthquakes.
This study has shown that the above great earthquakes were preceded as well as followed by long periods (⩾ 19 years) of decreased levels of seismic activity in the epicentral regions. Remarkable decrease in the seismicity following the year 1970 has been observed in the western half of the Central gap as well as in the Assam gap. Local seismic investigation in the Assam gap confirms this feature and the seismicity suggests the existence there of an asperity.The local seismic investigations in Garhwal Himalaya have shown that the small earthquakes are confined to the upper 6–8 km of the crust and may have strike-slip motions. These earthquakes occur in a region where teleseismically recorded events were few.  相似文献   

4.
The Karkonosze–Izera Massif is a large tectonic unit located in the northern periphery of the Bohemian Massif. It includes the Variscan Karkonosze Granite (about 328–304 Ma) surrounded by the following four older units:
  • -Izera–Kowary (the Early Paleozoic continental crust of the Saxothuringian Basin),
  • -Ještĕd (the Middle Devonian to Lower Viséan sedimentary succession deposited on the NE passive margin of the Saxothuringian Terrane), out of the present study area,
  • -Southern Karkonosze (metamorphosed sediments and volcanics filling the Saxothuringian Basin), out of the present study area,
  • -Leszczyniec (Early Ordovician, obducted fragment of Saxothuringian Basin sea floor).
The authors present a genetic model of ore mineralization in the Karkonosze–Izera Massif, in which ore deposits and ore minerals occurrences are related to the successive episodes of the geological history of the Karkonosze–Izera Massif:
  • -formation of the Saxothuringian Basin and its passive continental margin (about 500–490 Ma)
  • -Variscan thermal events:
    • -regional metamorphism (360–340 Ma)
    • -Karkonosze Granite intrusion (328–304 Ma)
  • -Late Cretaceous and Neogene-to-Recent hypergenic processes.
The oldest ore deposits and ore minerals occurrences of the Karkonosze–Izera Massif are represented by pyrite and magnetite deposits hosted in the Leszczyniec Unit as well as by magnetite deposit and, presumably, by a small part of tin mineralization hosted in the Izera–Kowary Unit. All these deposits and occurrences were subjected to the pre-Variscan regional metamorphism.Most of the Karkonosze–Izera Massif ore deposits and occurrences are related to the Karkonosze Granite intrusion. This group includes a spatially diversified assemblage of small ore deposits and ore mineral occurrences of: Fe, Cu, Sn, As, U, Co, Au, Ag, Pb, Ni, Bi, Zn, Sb, Se, S, Th, REE, Mo, W and Hg located within the granite and in granite-related pegmatites, in the close contact aureole of the granite and within the metamorphic envelope, at various distances from the granite. Assuming world standards, all these deposits are now uneconomic. Various age determinations indicated that ore formation connected with the Karkonosze Granite might have taken place mostly between about 326 and 270 Ma.The last ore-forming episode in the Karkonosze–Izera Massif is related to hypergenic processes, particularly important in the northern part of the massif, in the Izera–Kowary Unit where some uranium deposits and occurrences resulted from the infiltration of ore solutions that originated from the weathering of pre-existing accumulations of uranium minerals. A separate problem is the presence of oxidation zones of ore deposits and occurrences, both the fossil and the recent.A full list of ore minerals identified in described deposits and occurrences of the Karkonosze–Izera Massif together with relevant, key references is presented in the form of an appendix.  相似文献   

5.
The coprecipitation of alkali metal ions (Li+, Na+, K+ and Rb+) with calcium carbonate has been studied experimentally and the following results have been obtained:
  • 1.(1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite.
  • 2.(2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na+ which has approximately the same ionic radius as Ca2+.
  • 3.(3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals.
  • 4.(4) Our results support the hypothesis that
    • 4.1.(a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca2+ in the lattice, but
    • 4.2.(b) in aragonite, alkali metals substitute for Ca2+ in the crystal structure.
  • 5.(5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li+, Na+, K+ and Rb+) coprecipitated with calcite but decrease those with aragonite.
  • 6.(6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li+, K+ and Rb+) into the aragonite.
  相似文献   

6.
《Tectonophysics》1987,134(4):339-345
Downward continuation of temperature data from 73 wells extending to depths of 250 ft (76 m) provides constraints on the thermal regime of the Valles Caldera. Surface-temperature gradient data and bottom-hole temperatures were used as constraints in the downward continuation. Three factors were found to control the shallow thermal regime:
  • 1.(1) heat associated with the main geothermal source;
  • 2.(2) local topography; and
  • 3.(3) west-southwest groundwater flow. Although the well density is relatively high, comparison with the topography shows that the wells are not randomly distributed and tend to be clustered in valleys. Many details in the thermal regime appear to be related to groundwater drainage in these valleys. Temperature gradients and temperatures generally increase in the same direction as the regional drainage of the caldera suggesting a long-wavelength, shallow component to this regional gradient trend. Inversion of gradient and temperature data show additional deep heat input in the west-southwest sector of the caldera which appears to be spatially associated to the youngest volcanism. A previously reported northeast displacement of the main heat source from the surface anomaly has not been confirmed.
  相似文献   

7.
Most of the Cu (± Mo,Au) porphyry and porphyry-related deposits of the Urals are located in the Tagil-Magnitogorsk, East-Uralian Volcanic and Trans-Uralian volcanic arc megaterranes. They are related to subduction zones of different ages:
  • (1)Silurian westward subduction: Cu-porphyry deposits of the Birgilda-Tomino ore cluster (Birgilda, Tomino, and Kalinovskoe) and the Zeleny Dol Cu-porphyry deposit;
  • (2)Devonian Magnitogorsk eastward subduction and the subsequent collision with the East European plate: deposits and occurrences are located in the Tagil (skarn-porphyry Gumeshevskoe etc.) and Magnitogorsk terranes (Cu-porphyry Salavat and Voznesenskoe, Mo-porphyry Verkhne-Uralskoe, Au-porphyry Yubileinoe etc.), and probably in the Alapaevsk-Techa terrane (occurrences of the Alapayevsk-Sukhoy Log cluster);
  • (3)Late-Devonian to Carboniferous subduction: deposits located in the Trans-Uralian megaterrane. This includes Late-Devonian to Early Carboniferous Mikheevskoe Cu-porphyry and Tarutino Cu skarn-porphyry, Carboniferous deposits of the Alexandrov volcanic arc terrane (Bataly, Varvarinskoe) and Early Carboniferous deposits formed dew to eastward subduction under the Kazakh continent (Benkala, etc.).
  • (4)Continent-continent collision in Late Carboniferous produced the Talitsa Mo-porphyry deposit located in the East Uralian megaterrane.
Porphyry mineralization of the Magnitogorsk megaterrane shows an evolving relationship from gabbro-diorite and quartz diorite in the Middle Devonian (Gumeshevskoe, Salavat, Voznesenskoe) to granodiorite-plagiogranodiorite in the Late Devonian (Yubileinoe Au-porphyry) and finally to granodiorite in the Carboniferous (Talitsa Mo-porphyry) with a progressive increase in total REE, Rb and Sr contents. This corresponds to the evolution of the Magnitogorsk terrane from a volcanic arc which gave place to an arc-continent collision in the Famennian.  相似文献   

8.
《Tectonophysics》1987,140(1):49-63
In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3–5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units:
  • 1.(1) a 1.0–1.5 km thick layer of velocity 5.4–5.8 km/s,
  • 2.(2) a 3–4 km thick layer of velocity 6.0–6.3 km/s,
  • 3.(3) a 1.5–3.0 km thick layer of velocity 6.5–6.6 km/s, and
  • 4.(4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8–7.0 km/s. The mid-crust lies at 11–14 km depth, is 5–8 km thick, and has a velocity of 6.6–6.7 km/s. On the northwest side of our profile the mid-crust is a low-velocity zone beneath the 6.8–7.0 km/s lid. The lower crust lies at 16–19 km depth, is 7–13 km thick, and has a velocity of 6.9–7.2 km/s. Crustal thickness increases from 26 to 29 km from NW to SE in the model.
Although an unequivocal determination of crustal composition is not possible from P-wave velocities alone, our model has several geological and tectonic implications. We interpret the upper 7 km of basement on the northwest side of the profile as an ophiolitic fragment, since its thickness and velocity structure are consistent with that of oceanic crust. This fragment, which is not present 10–15 km to the west of the refraction profile, is probably at least partially responsible for the Great Valley gravity and magnetic anomalies, whose peaks lie about 10 km east of our profile. The middle and lower crust are probably gabbroic and the product of magmatic or tectonic underplating, or both. The crustal structure of the Great Valley is dissimilar to that of the adjacent Diablo Range, suggesting the existence of a fault or suture zone throughout the crust between these provinces.  相似文献   

9.
Bulk compositions were determined by broad-beam electron microprobe analysis for thirteen of the least aqueously altered chondrules in Murray (CM2). These and literature data reveal compositional differences between CM-CO and ordinary chondrite (OC) chondrules:
  • 1.(a) CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn and volatile lithophiles than OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration,
  • 2.(b) in CM-CO chondrites, abundances of refractory lithophiles are higher in nonporphyritic than porphyritic chondrules, whereas in H-L-LL3 chondrites the converse is true,
  • 3.(c) Cr ranges are greater and Cr and Mn correlate more strongly in chondrules in CM-CO than in H-L-LL3 chondrites.
We find evidence for two important lithophile precursor components of CM-CO chondrite chondrules:
  • 1.(1) pyroxene- and refractory-rich, FeO-poor;
  • 2.(2) olivine-rich, refractory and FeO-poor.
The occurrence of a few FeO-rich chondrules attests to a third component similar to matrix: olivine- and FeO-rich, refractories not characterized. The first two components differ from those inferred for OC chondrules, consistent with formation at different locations. The pyroxene- and refractory-rich, FeO-poor lithophile precursor component probably formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.  相似文献   

10.
《Organic Geochemistry》1987,11(1):15-24
Models of kerogens belonging to the three classical Types have been represented at the following evolution stages:
  • •-beginning of diagenesis (sensu-stricto),
  • •-beginning of catagenesis,
  • •-end of catagenesis.
Chemical models are drawn, using analytical data obtained on natural samples: elemental analysis, electron microscopy, 13C NMR, thermogravimetry, functional analysis and pyrolysis.In order both to get a statistical representation and make comparisons easier, the same molecular weight of about 25,000 has been chosen for the different models of kerogens at the beginning of the diagenesis stage.  相似文献   

11.
《Lithos》1987,20(2):153-168
The Thorsmörk ignimbrite, southern Iceland, contains a suite of granophyre xenoliths displaying magmatic or high-temperature sub-solidus mineral assemblages. These granophyres are consanguineous with the erupting comenditic magma. Four types of mineral assemblages are distinguished:
  • 1.(A) oligoclase, edenitic hornblende, salitic pyroxene, magnesian biotite, magnetite and sphene;
  • 2.(B) oligoclase, manganoan to sodic ferro-augite, fayalite, richterite, ilmenite and magnetite;
  • 3.(C) anorthoclase, ferrohedenbergite to aegirine hedenbergite, ilmenite, magnetite and (riebeckite);
  • 4.(D) cryptoperthite, aegirine hedenbergite to (aegirine), aenigmatite, arfvedsonite, ilmenite and magnetite.
Geothermometry shows that the xenoliths have crystallized between 900°C and 500°C at moderate oxygen fugacities, just above the FMQ buffer. It is further demonstrated that a hot vapour phase heavily charged with sodium and halogens, played a major role in the late sub-solidus crystallization of the different types.  相似文献   

12.
《Tectonophysics》1987,143(4):337-342
The electrical (apparent) resistivities ρ were measured by means of the magnetotelluric effect at twenty sites in Greece and in two directions, E-W and N-S. In most of the sites, ρEW differs considerably from ρNS. These results allow the following three zones to be distinguished:
  • 1.(1) an external zone along western Greece with ρEW >ρNS;
  • 2.(2) an intermediate zone along the main mountain chain in continental Greece where ρNs >ρEW and
  • 3.(3) an internal zone in the northern Aegean where ρEW >ρNS.
The above resistivity zones are compared to data from geotectonic, neotectonic, seismotectonic and in situ stress measurements which all show a similar geometry of zonation almost parallel to the active Hellenic Arc.  相似文献   

13.
《Tectonophysics》1987,142(1):99-109
Five hundred and fifty temperature values, initially measured as either bottom-hole temperatures (BHT) or drill-stem tests (DST), from 98 selected petroleum exploration wells form the basis of a geothermal gradient map of central Tunisia. A “global-statistical” method was employed to correct the BHT measurements, using the DST as references. The geothermal gradient ranges from 23° to 49°C/km. Comparison of the geothermal gradient with structural, gravimetric and petroleum data indicates that:
  • 1.(1) the general trend of the geothermal gradient curves reflects the main structural directions of the region,
  • 2.(2) zones of low and high geothermal gradient are correlated with zones of negative and positive Bouguer anomalies and
  • 3.(3) the five most important oil fields of central Tunisia are located near the geothermal gradient curve of 40° C/km.
Such associations could have practical importance in petroleum exploration, but their significance must first be established through further investigation and additional data.  相似文献   

14.
Determination of critical buckling loads of columns in a medium which offers resistance to lateral deflections depend on:
  • (a) Length of the pile, L.
  • (b) Flexural stiffness of the pile, EI.
  • (c) Stiffness of the soil, K, and
  • (d) Boundary conditions of the pile, both at the top and the tip.
In this paper, solutions for buckling loads have been obtained in closed form by energy methods for fully embedded vertical piles for boundary conditions, pinned top-pinned tip, fixed top-fixed tip, and a linear variation of soil stiffness. The effects of pile length, soil stiffness, and boundary conditions on buckling loads and mode of buckling have been studied for pile lengths up to 24 m with EI of 477 tm2, K0 [A] from 0 to 2000 t/m2 and Nh [B] from 0 to 2000 t/m3.  相似文献   

15.
《Tectonophysics》1987,132(4):311-320
A Bayesian discrete distribution, as developed by Ferraes (1985), is applied to predict the inter-arrival times for strong shocks in the Hellenic Arc on the basis of nine samples of shocks with seismotectonic locations very different from those used by Ferraes. The results suggest an alternative view of the Bayesian probabilistic prediction of strong earthquakes in the Hellenic Arc, and can be summed up as follows:
  • 1.(a) Maximum final Bayesian probabilities of various inter-arrival times in a given seismotectonic segment are very dependent on the data set used and particularly on its time length.
  • 2.(b) When using this method to determine the time intervals during which large shocks are to be expected in the Western and Eastern Hellenic arcs, it is very difficult to estimate intervals of less than a decade. The determination of the occurrence time, even in the long-term sense, remains the major problem in the prediction of these shocks.
  • 3.(c) Bayesian probabilities in conjunction with seismicity observations indicate that large intermediate depth earthquakes in the Hellenic Arc are long overdue. Shocks of this sort can be expected to occur in the next few years.
It is also pointed out that although Bayesian-type predictions may be useful for engineering purposes, they are not a suitable basis for making specific predictions or taking special precautions.  相似文献   

16.
Climatic change in SE Europe can be characterized by the term aridification, which means increasing semi-aridity, manifested in an increase of mean annual temperature and at the same time in a decrease in the yearly precipitation.The paper deals with research results obtained within the framework of the MEDALUS II project (funded by the Commission of the European Communities). The project had the following objectives:
  • 1.(i) Assessment of the impact of global change on the climate of the investigated area, including possible future climates.
  • 2.(ii) Physical processes of aridification, including studies of groundwater level change, soil moisture profile dynamics, soil development, vegetation change and soil erosion.
  • 3.(iii) Land use change, involving research on present land use and suggestions for the future.
Various methods were applied with respect to the different research objectives.
  • 1.(i) Statistical analysis of climatic oscillations and computer runs of climatic scenarios,
  • 2.(ii) Analysis of ground water data, mapping and analysis of soils and vegetation, assessment of present and future soil, and
  • 3.(iii) Land capability assessment through ranking environmental conditions according to the demands of the most widely grown arable crops in Hungary.
According to our results i) the average annual warming during the last 110 years was +0.0105 °C, and precipitation decreased by 0.917 mm/year; ii) a decline of −2 to −4 m in the annual mean groundwater level can be detected in the most sensitive areas, with gradual lowering of the water table in alkali ponds; complete desiccation of some of them severs the direct contact between groundwater and salt-affected soils, the solonchak soil dynamics cease, helophile and hygrophile plant associations disappear, and consequent changes in the soil erosion regime are likely to lead to disastrous erosion in the future; iii) the climatic changes induce a transformation in land use from arable crops to plantations, starting with orchards.  相似文献   

17.
Following a tentative evaluation of palynological information from Ladinian and, more particularly, Karnian successions, there seems to be every indication that qualitative and quantitative compositional differences of palynological assemblages could well be applied in testing concepts of Triassic phytogeography and palaeoclimatology. The following implications are emphasized:
  1. There is sufficient palynological evidence that the Mediterranean region includes a domain of mixed northern (Laurasian) and southern (Gondwana) types of floras.
  2. The concept of an essentially arid nature of a wide equatorial climatic belt during Triassic times finds palynological support.
  3. Palynological evidence does not contradict a concept of pronounced decrease in precipitation towards the western part of the Mediterranean region.
  4. In Europe, occurrences of hygrophytic palynofloras and coals within an arid climatic zone can be explained by the water-supply of extensive river-systems.
  相似文献   

18.
Susceptibility of intrusion-related landslides in an active volcano was evaluated coupling the landslide susceptibility estimation by random forest (RF), and the probabilistic volcanic vent opening distribution, as proxy for magma injection, using the QVAST tool. In order to develop and test the method proposed here, the RF/QVAST approach was adopted for Stromboli volcano (Southern Italy) since it experienced moderate to huge instability events, it is geomorphologically prone to instability events, and it is affected by active intense volcanic activity that can produce slope instability. The main destabilizing factors of the volcanic flanks are the slope, the aspect, the terrain roughness, the land cover and the litho-technical features of the outcropping rocks. Estimation of volcanic susceptibility shows that the areas with high probability of new vent opening are located in the north-western unstable volcano flank (Sciara del Fuoco), in the volcano summit and the north-eastern volcano flank coherent with the possible re-activation of the eruptive fissures related to the regional tectonic setting. The areas with higher probability of intrusion-related landslides are located in the upper part of the Sciara del Fuoco, while the rest of the island show moderate to low probability of intrusion-related landslide occurrence.  相似文献   

19.
The Thakkhola–Mustang graben is located at the northern side of the Dhaulagiri and Annapurna ranges in North Central Nepal. The structural pattern is mainly characterised by the N020–040° Thakkhola Fault system responsible for the development of the half-graben. A detailed study of the substrate and the sedimentary fill in several outcrops indicates polyphased faulting:-pre-sedimentation faulting (Miocene), with a mainly NNW–SSE to N–S compressional stress expressed in the substratum by N020–040° and N180–N010° sinistral and N130–140° dextral conjugate strike-slip faults;-syn-sedimentation faulting (Pliocene–Pleistocene), characterised by a W–E to WNW–ESE extensional stress and tectonic subsidence of the half-graben during the Tetang period (Pliocene probably), followed by a doming of the Tetang deposits and a short period of erosion (cf. Pliocene planation surface and unconformity between the Tetang and Thakkhola Formations); the Thakkhola period (Pleistocene) is characterized by a W–E to WNW–ESE extensional stress and a major subsidence of the half graben;-post-sedimentation recurrent extensional faulting and N–S and NE–SW normal faults in the late Quaternary terrace formations.Geodynamic interpretation of the faulting is discussed in relation to the following:
  • 1.the geographic situation of the Thakkhola–Mustang half-graben in the southern part of Tibet and its setting in the Tethyan series above the South Tibetan Detachment System (STDS);
  • 2.the geodynamic conditions of the convergence between India and Eurasia and the dextral east–west shearing between the High Himalayas and south Tibet;
  • 3.the possible relations between the sinistral Thakkhola and the dextral Karakorum strike-slip faults in a N–S compressional stress regime during the Miocene.
  相似文献   

20.
《Comptes Rendus Geoscience》2019,351(5):355-365
Located in northern Niger, the NW–SE Téfidet trough is the western branch of the Ténéré rift megasystem.Here we present a tectono-sedimentary analysis of the Téfidet trough, based on the combined use of satellite imagery, field observations and measures, and available literature. We use these data to analyse the sedimentary facies and the tectonic deformations (faults, folds, basins) in the Téfidet trough, and derive their relative chronology. Doing so, we characterize synrift and postrift deformations and their interactions with sedimentation.Altogether our analyses suggest that the Téfidet trough was affected from the Cretaceous to the Paleogene by three major tectonic periods.
  • •The first period was a rifting stage with extension and transtension during the Albian–Aptian times. The mean extension was ∼N60° and dominantly produced NW–SE-trending normal faults, a few strike-slip faults locally associated with small folds with sigmoidal axis and small reverse faults, and progressive unconformities.
  • •the second period was also a rifting time, which prevailed during the Upper Cretaceous. The regime was marked by transtensional to extensional tectonics, under a ∼N130° shortening and a ∼N60° trending stretching. The end of this period saw the closure of the Téfidet trough.
  • •the third period was a postrift stage. It was characterized by a ∼N70° extensional to transtensional regime during the Oligocene–Pliocene. It mainly produced post-sedimentary extensional faults and fractures and alkaline volcanism. We eventually discuss these deformation phases in relation with the Cretaceous Gondwana breakup and its related rifting events in West and North Africa, and with the subsequent Africa–Europe collision.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号