首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
In situ arsenic removal in an alkaline clastic aquifer   总被引:1,自引:1,他引:0  
In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (<a few tens of μg/L). The low dissolved Fe content limits development of significant Fe-oxide and the high-pH limits As adsorption onto Fe-oxide. The chemistries of ground water in the two aquifers studied are similar except for the inorganic As species. Although total inorganic As concentrations were similar, one aquifer has dominantly aqueous As(III) and the other has mostly As(V). Dissolved O2, Fe(II), and HCl were added to water and injected into the two aquifers to form Fe-oxide and lower the pH to remove As. Cycles of injection and withdrawal involved varying Fe(II) concentrations in the injectate. The As concentrations in water withdrawn from the two aquifers were as low as 1 and 6 μg/L, with greater As removal from the aquifer containing As(V). However, Fe and Mn concentrations increased to levels greater than US drinking water standards during some of the withdrawal periods. A balance between As removal and maintenance of low Fe and Mn concentrations may be a design consideration if this approach is used for public-supply systems. The ability to lower As concentrations in situ in high-pH ground water should have broad applicability because similar high-As ground water is present in many parts of the world.  相似文献   

2.
In the Pine Creek Geosyncline, fast moving, annually recharged, low-salinity ground waters dissolve uranium- and magnesium-enriched gangue minerals from mineralized aquifer rocks. The level of dissolved uranium depends on prevailing pH, Eh, salinity and degree of adsorption, which limits its effectiveness as an exploration indicator. Near each known deposit, leaching of magnesium-enriched gangue minerals produces ground waters with very similar major-element concentration plots, the shape of which constitutes a mineralized aquifer “signature”. Gangue minerals also supply high levels of Mg2+ (expressed as NMg = [Mg2+]/[Ca2+ + Mg2+ + Na+ + K+] in milliequivalents per litre) to contained ground waters, NMg > 0.8 being common in ground waters from mineralized aquifers at each Pine Creek Geosyncline deposit. Data from Ranger One No. 3 ore body illustrates how progressive mixing of waters from mineralized and unmineralized aquifers causes graded reductions in NMg, which, when plotted onto a ground plan, delineate a hydrogeochemical aureole.High NMg (> 0.8) coincides with high uranium concentration (> 20 μg/l of U) in ground waters near Nabarlek and Ranger. Because pH-Eh conditions in aquifers at Jabiluka depress uranium solution, < 10 μg/l of U is present, although NMg values are generally > 0.8. To date NMg has always been < 0.8 in nonmineralized aquifer waters, whereas uranium may be > 50 μg/l in ground waters from felsic igneous aquifers, which can be identified as uneconomic by low (< 0.4) NMg, and by a fixed relationship between uranium and co-leached species such as F- and soluble salts.Measurements of pH, Eh, salinity, Fe(II), Ca, Mg, Na, K, Cl, SO4, total carbonate, phosphate, F-, Cu, Pb, Zn and U in waters from 48 percussion holes in and near the Koongarra ore bodies have been related to mineralogy recorded in drill logs. The composition of waters from 20 holes near and along strike from known mineralization, fitted the mineralized aquifer “signature”, had NMg > 0.8 and uranium up to 4100 μ/l. These data confirm the use in this region of NMg as a hydrogeochemical indicator of uranium mineralization; they also indicate additional zones of possible mineralization.  相似文献   

3.
Chemical characterization of groundwater is essential to bring out its nature and utility. Samples from shallow and deep ground water of the same location were collected and studied for their geochemical characteristics following standard procedures (APHA 1998). Sediment samples from different depths were collected and analysed for minerals using FTIR and SEM. Resisitivity logging was carried out in the bore well to understand the variations in depth to fresh water potential. The shallow ground water is dominated by Na–Cl–HCO3–SO4 and deeper groundwater by Na–HCO3–SO4–Cl types. It is observed that there is a significant ionic variation with depth. The ionic strength of the deeper samples is lesser than in the shallower samples. Wide pH variations in the shallow water samples are due to ion exchange process. Thermodynamic stability plot was used to identify the state of stability. It is inferred that there is no major significant difference in the thermodynamic state of stability in the shallow and the deeper aquifers as the aquifer matrix for the shallow and deeper aquifers are almost similar. Saturation index of Gibbsite, Kaolinite, Calcite, Dolomite and anhydrite, were studied for shallow and deep aquifers, to identify the difference in hydro chemical signatures. The Si/Al ratios of shallow samples are less when compared with the deeper samples. Leaching of secondary salts was the chief mechanism controlling the ground water chemistry of the region.  相似文献   

4.
Incubation studies were carried out using 5 freshly collected sediments from shallow aquifers of the Hetao Basin, Inner Mongolia. The aquifer sediments covering a range of redox conditions, as indicated by their deep grey to yellow color were mixed with degassed artificial As solution or degassed deionized water at a ratio of solid to water of about 1:10 (wt./wt.). Suspensions which were either amended with glucose or autoclaved, were incubated in parallel with unamended suspensions. Five microcosm cultures of unamended sediments gradually release the equivalent of 0.03–0.30 μg/g As to the dissolved phase. The addition of glucose as a potential electron donor results in a marked stimulation in the mobilization of As (0.71–3.81 μg/g) in the amended incubations for all sediments. The quantity of As released accounts for 60–70% of As bound to Fe/Mn oxides in the original sediments. The microbially mediated mobilization of As with the organic nutrient as an electron donor is strongly associated with the As bound to Fe/Mn oxides, as well as the exchangeable As. During the incubations amended with glucose, 2–4% of the sediment Fe is released. The results suggest that the introduction of labile dissolved organic C into the yellowish sediment aquifers with As-free groundwater would reduce a significant proportion of the Fe(III) oxyhydroxides mediated by anaerobic bacteria respiration and increase groundwater As concentrations.  相似文献   

5.
Geological relationships, hydrogeology and chemical composition of ground water in northern Banat were studied through the period 2000–2004 using the available background data from published and unpublished sources. Northern Banat is the extreme northeastern part of the Republic of Serbia and a geotectonic part of the vast Pannonian depression. The source of domestic and industrial water supply is only groundwater from artesian and subartesian aquifers of Lower Pleistocene (Q11) and Upper Pleistocene (Pl32) sand deposits. The ground water, “peculiar” in chemical composition, is the only source of drinking water in the arid area. A notable variation in the chemical composition of artesian waters within the same geotectonic unit (Pannonian basin), abstracted for municipal water supplies of Kikinda, Novi Knezevac and Djala, has attracted attention of these authors. Our paper attempts to interpret the variation in the chemical composition of ground water and the cause of the variation by the interaction of ground water and rocks forming the aquifers on the case example of the water supply sources for the three mentioned towns. With respect to the depth and lithology of the aquifers, we interpret the varied chemical compositions of waters in the mentioned sources as a consequence of natural factors (geological environment), geological relationships and hydrogeological conditions.  相似文献   

6.
 Saline/fresh water interface structure is one of the most important and basic hydrogeological parameter that needs to be estimated for studies related to coastal zone management, well-field design and understanding saline water intrusion mechanism/processes. The success and stability of a groundwater structure in a coastal region depend upon an accurate estimate of interface structure between saline and fresh water zones, aquifer-aquiclude boundaries and their lateral continuities and the interstitial water qualities of aquifers. Self-potential and resistivity logs provide a reasonably good basis for such estimates and for sustainable development of fresh groundwater resources. The interface depth structure for the Mahanadi delta region, as obtained and interpreted through self-potential and resistivity logs, provides a fairly clear picture of the regional extensions and boundaries of aquifers, aquicludes and interstitial water quality patterns. Aquifers in the northern sector of the basin and within the framework of Birupa and Mahanadi are characterized by an interface depth range that varies between 40 and 280 m below ground level (bgl) with brackish water on the top underlain by freshwater aquifers. The aquifers in the southern sector within the framework of Khatjori/Devi and Koyakhai/Daya/Kushbhadra/Bhargavi are characterized by an interface depth range that varies from 10 to 120 m with freshwater aquifers near the surface underlain by saline, brackish water aquifers. The inversion of these major fluid systems appears to have taken place over a narrow zone between Mahanadi and Khatjori tributaries, possibly over a wide subsurface ridge with separate basin characteristics. Received: 29 November 1999 · Accepted: 2 May 2000  相似文献   

7.
Analysis of hydraulic heads and chemical compositions of Devonian formation waters in the west central part of the Alberta Basin, Canada, characterizes the origin of formation waters and migration of brines. The Devonian succession in the study area lies 2000–5000 m below the ground surface, and has an approximate total thickness of 1000 m and an average slope of 15 m/km. Four Devonian aquifers are present in the study area, which form two aquifer systems [i.e., a Middle–Upper Devonian aquifer system (MUDAS) consisting of the Elk Point and Woodbend–Beaverhill Lake aquifers, and an Upper Devonian aquifer system (UDAS) consisting of the Winterburn and Wabamun aquifers]. The Ireton is an effective aquitard between these two systems in the eastern parts of the study area. The entire Devonian succession is confined below by efficient aquitards of the underlying Cambrian shales and/or the Precambrian basement, and above by overlying Carboniferous shales of the Exshaw and Lower Banff Formations.The formation water chemistry shows that the Devonian succession contains two distinct brine types: a ‘heavy brine,’ located updip, defined approximately by TDS >200 g/l, and a ‘light brine’ with TDS <200 g/l. Hydraulic head distributions suggest that, presently, the ‘light brine’ attempts to flow updip, thereby pushing the ‘heavy brine’ ahead. The interface between the two brines is lobate and forms large-scale tongues that are due to channeled flow along high-permeability pathways. Geological and hydrogeochemical data suggest that the following processes determined the present composition of the ‘light’ and ‘heavy’ brines: original seawater, evaporation beyond gypsum but below halite saturation, dolomitization, clay dehydration, gypsum dewatering, thermochemical sulfate reduction (TSR), and halite dissolution. The influx of meteoric (from the south) and metamorphic (from the west) waters can be recognized only in the ‘light brine.’ Albitization can be unequivocally identified only in the ‘heavy brine.’ The ‘heavy brine’ may be residual Middle Devonian evaporitic brine from the Williston Basin or the Elk Point Basin, or it may have originated from partial dissolution of thick, laterally extensive Middle Devonian evaporite deposits to the east of the study area. The ‘light brine’ most probably originated from dilution of ‘heavy brine’ in post-Laramide times.  相似文献   

8.
Hydrogen sulfide occurs in high concentration (10–200 mg/l) in different parts of Kuwait City and its suburbs at relatively shallow depths (15–40 m from the surface). This was revealed by drilling through the aquifer system underlying the city and sampling and analyzing the ground water at the drilled locations. The near-absence of coliform bacteria in the sulfide-rich zones, the presence of sulfur-reducing bacteria in the deep (>80 m) Dammam Formation aquifer and a linear positive relation between the concentration of hydrogen sulfide and the total dissolved solids content suggested non-anthropogenic origin of the sulfide in the ground water of Kuwait. The upward movement of sulfide-rich water from depth and its differential flushing by surface recharge through outcrops of the aquifers appear to have given rise to the present distribution of hydrogen sulfide in the aquifers underlying the Kuwait City.  相似文献   

9.
Chemical, physical, and biological features of streams and ground water of the North-Eastern area of Rome are jointly analyzed in order to assess the status of water resources. Ground water was investigated with classical survey methods (pH, temperature, and electric conductivity). Microbiological pollution, faunal composition, and stream surrounding area conditions of surface waters were studied, in order to quantify the residual value of these ecosystems from both a human and an environmental point of view. Results show a general impairment of the system and the comparison between superficial waters and shallow ground waters makes it possible to detect the presence of a connection between the two levels. This relationship occurs as an exchange from superficial waters (streams and rivers) to the shallow aquifers. Where superficial waters are contaminated, as in the Tor Sapienza stream, pollutants move to the shallow aquifers too, due to the decreased pressure of the over-exploited aquifer. Moreover, uncontrolled drilling activity, diffused in urban areas, makes it possible the connection between shallow and deep ground water. Notwithstanding this, the mixing between superficial and deep ground water system in Rome is not very widespread and, apparently, limited to restricted areas.  相似文献   

10.
三江平原地下水资源潜力评价   总被引:6,自引:0,他引:6  
三江平原地区第四系松散堆积物厚度一般为100~200m,最厚达:300m,为结构单一、大厚度的砂、砂砾石含水层,储存运移着巨量的孔隙水(部分为微承压水)。含水层疏导功能与富水性强,单井涌水量多在1000m^3/d,且水质为矿化度小于lg/L的淡水。依据含水层的地质时代和贮水介质类型,将三江平原地下水系统划分成第四系孔隙含水层亚系统、第三系孔隙裂隙含水层亚系统、基岩裂隙含水层亚系统。其中第四系孔隙含水层亚系统进一步分成更新统含水层次级亚系统和全新统含水层次级亚系统;第四系更新统含水层次级亚系统又细分为下、中、上更新统含水层。根据盆地浅部区域地下水分布的主要控制因素(流域水系、地质构造、地貌条件、含水层结构及地下水补、径、排条件),对三江盆地地下水系统进行了系统的描述;各地下水动力亚系统受外部动力条件(降水、蒸发、地表水、地下水)的制约,同时受内动力条件(含水介质循环条件)的控制,形成了独特的地下水动力场;论述了含水层系统的特征、边界条件、输入特征、输出特征、内部功能特征等。最后对三江平原的地下水资源潜力进行了计算与评价:依据水均衡原理,充分地考虑了计算区及计算单元在开采状态下多年补、排均衡的基础上,利用长系列的气象、水文资料,应用三维模型模拟计算了丰、平、枯水年各计算单元的地下水补给量和可开采量,进而求得了多年均衡条件下全区地下水可开采资源量。  相似文献   

11.
Groundwater quality in parts of Central Ganga Basin, India   总被引:1,自引:0,他引:1  
 This paper deals with the drinking water quality of the Ganga-Kali sub-basin which occupies 1300 km2 over parts of Aligarh and Etah districts. Water samples were collected from shallow and deep aquifers and were analyzed for major ions and trace elements. The analytical data were interpreted according to published guidelines. Chemical analysis shows that the groundwater in the basin is alkali bicarbonate type. Trace element studies of water from the shallow aquifer show that the concentration of toxic metals Fe, Mn, Cd, Pb, and Cr+6 are above permissible limits which may present a health hazard. The water from the deep aquifer is comparatively free from contamination. The aquifers are subject to contamination due to sewage effluents and excessive use of fertilizers and pesticides in agriculture. Received: 7 December 1998 · Accepted: 2 March 1999  相似文献   

12.
The intensity of agriculture has increased significantly during the past 30 years, resulting in increased detection of agricultural contaminants (nutrients, pesticides, salts, trace elements, and pathogens) in groundwater. Till, glaciolacustrine, and loess deposits of Quaternary age compose the most common surficial deposits underlying agricultural areas in North America. Quaternary aquitards generally contain higher concentrations of solid organic carbon (SOC, as much as 1.4%), dissolved organic carbon (DOC, as much as 205 mg/L), and reduced sulfur (as much as 0.9%) than do aquifers. Their potential to sorb pesticides increases with the percent of older SOC, because diagenesis increases Koc. Denitrification consistently reduces nitrate to non-detectable levels in unweathered Quaternary aquitards. Organic carbon of Quaternary age is a more labile electron donor than carbon from shale clasts. Pyrite is a more labile electron donor than carbon in many instances. Unweathered Quaternary aquitards provide a high degree of protection for underlying aquifers, due to their large reserves of SOC and reduced sulfur for sorption and denitrification, combined with their typically low hydraulic conductivity. In contrast, agricultural contaminants are common in weathered Quaternary aquitards. Lower reserves of reduced sulfur and sorptive/labile organic carbon, and a higher bulk K due to fractures, limit their ability to attenuate nitrate and pesticides. Subsurface drainage, which is common in Quaternary aquitards because of high water tables, bypasses the attenuation capacity of Quaternary aquitards and facilitates the transport of agricultural contaminants to surface water. Electronic Publication  相似文献   

13.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

14.
 Artificial lowering of the groundwater level in dolomitic aquifers of the Far West Rand gold mining area has led to the formation of hundreds of sinkholes and subsidences. Where ground movements develop in or around important structures, it has become standard practice to drill boreholes for exploration and to inject mine tailings (slimes), cement and water to fill cavernous zones and arrest further ground movements. Although this method of grouting has mostly been effective, some boreholes accepted such large quantities of grout that the operation became prohibitively expensive. This paper describes an experiment to construct subsurface barriers by pouring wet (high slump) concrete via closely-spaced lines of boreholes into cavernous zones beneath a depression on a provincial road. The barriers required a small quantity of concrete and the zone between barriers was quickly filled by grout. The lack of further ground movements confirmed the success of the project. Received: 22 May 2000 · Accepted: 18 July 2000  相似文献   

15.
地下水资源是长江三角洲地区社会经济发展的重要后备资源。根据江苏宝应境内钻取的145m深的By1孔岩芯,沉积物粒度分析显示,钻孔20m之下有5个主要的含水层,主要是粉砂质砂层,其间是粘土质粉砂层隔水层;  在钻孔60m之下有3个厚度超过10m的含水层,显示该区域深部地下水资源十分丰富,具有较大的开发价值。宝应钻孔揭示的地下含水层上覆广泛分布末次冰盛期的硬质粘土层,对地下水资源起到明显的保护作用,未来地下水资源开发中应重视“硬粘土层”的保护和防止海水内侵,并加强深层地下水资源的科学调查与开发管理。  相似文献   

16.
The isotopic composition of groundwater sources of the Sinai Desert was surveyed. The results are characterized by a large spread in the oxygen-18 and deuterium abundances, compared to equivalent systems from less arid climates. The variability reflects differences in the altitude at which precipitation occurred, the evaporation from stagnant surface waters prior to their infiltration into the ground and admixtures of waters which are not of meteoric or recent origin. It is difficult to distinguish between water sources recharged by direct infiltration and others recharged through the intermediary of flood waters, on the basis of their isotope composition. The isotopio composition enables a clearcut distinction, however, between paleowaters and more recently recharged groundwaters. Among the conclusions: paleowaters play a central role in the deep aquifers of desert areas; direct rain recharge to aquifers is widespread; surface waters which have undergone extensive evaporation contribute their water to local perched aquifers which are found along their route.  相似文献   

17.
Groundwater chemistry and tracer-based age data were used to assess contaminant movement and geochemical processes in the middle Claiborne aquifer (MCA) of the Mississippi embayment aquifer system. Water samples were collected from 30 drinking-water wells (mostly domestic and public supply) and analyzed for nutrients, major ions, pesticides, volatile organic compounds (VOCs), and transient age tracers (chlorofluorocarbons, tritium and helium-3, and sulfur hexafluoride). Redox conditions are highly variable throughout the MCA. However, mostly oxic groundwater with low dissolved solids is more vulnerable to nitrate contamination in the outcrop areas east of the Mississippi River in Mississippi and west Tennessee than in mostly anoxic groundwater in downgradient areas in western parts of the study area. Groundwater in the outcrop area was relatively young (apparent age of less than 40 years) with significantly (p < 0.05) higher dissolved oxygen and nitrate–N concentrations and higher detections of pesticides and VOCs compared to water samples from wells in downgradient areas. Oxygen reduction and denitrification rates were low compared to other aquifers in the United States (zero order rate constants for oxygen reduction and denitrification were 4.7 and 5–10 μmol/L/year, respectively). Elevated concentrations of nitrate–N, and detections of pesticides and VOCs in some deep public supply wells (>50 m depth) indicated contaminant movement from shallow parts of the aquifer into deeper oxic zones. Given the persistence of nitrate in young oxic groundwater that was recharged several decades ago, and the lack of a confining unit, the downward movement of young contaminated water may result in higher nitrate concentrations over time in deeper parts of the aquifer containing older oxic water.  相似文献   

18.
The Essaouira synclinal zone is one of the Moroccan semi-arid zones with annual rainfalls not exceeding 300 mm yr−1 and very high potential evapo-transpiration of about 920 mm yr−1. This syncline with a Senonian axial zone is bordered by two diapiric structures of Triassic deposits: the Tidzi Diapir that outcrops in the east and south, and the hidden Essaouira diapir in the west, which was found by geophysics. This syncline contains two main superimposed aquifers. (i) The Plio-Quaternary aquifer consists of sands, sandstone and conglomerates and provides the main part of the water supply. This free-water table flows out towards the northwest and its surface is affected by significant piezometric variations. (ii) The calcareous dolomitic Turonian is a confined aquifer under the Senonian marls in the and in direct contact with the Plio-Quaternary. For a few years, the drinking water supply to the town of Essaouira has come from deep drillings.These two aquifers were sampled in June 1995 and in Januray 1996 after exceptional rainfalls. All waters have the same geochemical profile. The interpretation of the total dissolved solids and chloride content of Plio-Quaternary aquifers makes it possible to specify their origins. It emphasises, in particular, the source from the Ksob Wadi in the northeast and the role of the hidden Essaouira diapir. Nitrate levels were raised excessively, increasing at the same time as chloride concentrations during the rains of the winter of 1996, and underline the wells vulnerability to pastoral and domestic activities.The interpretation of O- and H-isotopes distinguishes two contrasting Plio-Quaternary and Turonian aquifers with an Atlantic origin for the rain recharge. A specific campaign was varried out in November 1996 to date water from the Turonian aquifer by 14C. Two boreholes draw water of several thousands years old.  相似文献   

19.
Authigenic calcite silts at Wadi Midauwara in Kharga Oasis, Egypt, indicate the prolonged presence of surface water during the Marine Isotope Stage 5e pluvial phase recognized across North Africa. Exposed over an area of  4.25 km2, these silts record the ponding of water derived from springs along the Libyan Plateau escarpment and from surface drainage. The δ18O values of these lacustrine carbonates (− 11.3‰ to − 8.0‰ PDB), are too high to reflect equilibrium precipitation with Nubian aquifer water or water of an exclusively Atlantic origin. Mg/Ca and Sr/Ca of the silts have a modest negative covariance with silt δ18O values, suggesting that the water may have experienced the shortest residence time in local aquifers when the water δ18O values were highest. Furthermore, intra-shell δ18O, Sr/Ca, and Ba/Ca analyses of the freshwater gastropod Melanoides tuberculata are consistent with a perennially fresh water source, suggesting that strong evaporative effects expected in a monsoonal climate did not occur, or that dry season spring flow was of sufficient magnitude to mute the effects of evaporation. The input of a second, isotopically heavier water source to aquifers, possibly Indian Ocean monsoonal rain, could explain the observed trends in δ18O and minor element ratios.  相似文献   

20.
A regional lithostratigraphic and hydraulic interpretation is presented for the upper 0–300 m of the Benin Formation where groundwater is abstracted in the Rivers State, Nigeria.The aquifers are predominantly sand beds with minor clays, lignite, and conglomerate intercalations. The sands are very fine to coarse grained, subangular to subrounded, poor to fairly well sorted and mostly lithic arenites. A maximum thickness greater than 50 m is developed in places and vertical stacking is common. Most of the conglomerate beds have a matrix support fabric and appear restricted to the east as the lignite beds. An east-west trending belt, about central to the state, seems to contain more clay interbeds.The transmissivity values for the aquifers range from 1.05 × 10–2 to 11.3 × 10–2 m2/sec, while the coefficient of storage varies between 1.07 × 10–4 and 3.53 × 10–4 and specific capacity values lie between 19.01 and 139.8 m3/h/m drawdown. These values suggest that the aquifers have very good capacity to transmit groundwater. The static water level map shows a north-to-south regional groundwater flow pattern except in the northeast (Imo River catchment area) where the flow is northeast to southwest. The groundwater quality is very good and compares favorably with WHO standards for drinking water. However, relatively high iron and chloride values are localized in time and space.Deposition of the aquifer materials is thought to have occurred in alluvial fan, fluvial channel, tidal channel, intertidal flat, beach, and related microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号