首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the design of transfers from the Sun–Earth libration orbits, at the \(L_{1}\) and \(L_{2}\) points, towards the Moon using natural dynamics in order to assess the feasibility of future disposal or lifetime extension operations. With an eye to the probably small quantity of propellant left when its operational life has ended, the spacecraft leaves the libration point orbit on an unstable invariant manifold to bring itself closer to the Earth and Moon. The total trajectory is modeled in the coupled circular restricted three-body problem, and some preliminary study of the use of solar radiation pressure is also provided. The concept of survivability and event maps is introduced to obtain suitable conditions that can be targeted such that the spacecraft impacts, or is weakly captured by, the Moon. Weak capture at the Moon is studied by method of these maps. Some results for planar Lyapunov orbits at \(L_{1}\) and \(L_{2}\) are given, as well as some results for the operational orbit of SOHO.  相似文献   

2.
The restricted three-body problem (R3BP) possesses the property that some classes of doubly asymptotic (i.e., homoclinic or heteroclinic) orbits are limit members of families of periodic orbits, this phenomenon has been known as the “blue sky catastrophe” termination principle. A similar case occurs in the restricted four body problem for the collinear equilibrium point $L_{2}$ L 2 . In the restricted four body problem with primaries in a triangle relative equilibrium, we show that the same phenomenon observed in the R3BP occurs. We prove that there exists a critical value of the mass parameter $\mu _{b}$ μ b such that for $\mu =\mu _{b}$ μ = μ b a Hamiltonian Hopf bifurcation takes place. Moreover we show that for $\mu >\mu _{b}$ μ > μ b the stable and unstable manifolds of $L_{2}$ L 2 intersect transversally and the spectrum corresponds to a complex saddle. This proves that Henrard’s theorem applies at least for $\mu $ μ close to $\mu _{b}$ μ b . In particular there exists a family of periodic orbits having the homoclinic orbit as a limit.  相似文献   

3.
We consider a two-planet system migrating under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, vertical critical orbits may give rise to generating stable families of \(3D\) periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the \(2/1\) and \(3/1\) resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the “inclination resonance” occurs.  相似文献   

4.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

5.
We explore the long-term stability of Earth Trojans by using a chaos indicator, the Frequency Map Analysis. We find that there is an extended stability region at low eccentricity and for inclinations lower than about $50^{\circ }$ even if the most stable orbits are found at $i \le 40^{\circ }$ . This region is not limited in libration amplitude, contrary to what found for Trojan orbits around outer planets. We also investigate how the stability properties are affected by the tidal force of the Earth–Moon system and by the Yarkovsky force. The tidal field of the Earth–Moon system reduces the stability of the Earth Trojans at high inclinations while the Yarkovsky force, at least for bodies larger than 10 m in diameter, does not seem to strongly influence the long-term stability. Earth Trojan orbits with the lowest diffusion rate survive on timescales of the order of $10^9$  years but their evolution is chaotic. Their behaviour is similar to that of Mars Trojans even if Earth Trojans appear to have shorter lifetimes.  相似文献   

6.
This paper deals with the existence of libration points and their linear stability when the more massive primary is radiating and the smaller is an oblate spheroid. Our study includes the effects of oblateness of $\bar{J}_{2i}$ (i=1,2) with respect to the smaller primary in the restricted three-body problem. Under combining the perturbed forces that were mentioned before, the collinear points remain unstable and the triangular points are stable for 0<μ<μ c , and unstable in the range $\mu_{c} \le\mu\le\frac{1}{2}$ , where $\mu_{c} \in(0,\frac{1}{2})$ , it is also observed that for these points the range of stability will decrease. The relations for periodic orbits around five libration points with their semimajor, semiminor axes, eccentricities, the frequencies of orbits and periods are found, furthermore for the orbits around the triangular points the orientation and the coefficients of long and short periodic terms also are found in the range 0<μ<μ c .  相似文献   

7.
We consider an elliptic restricted four-body system including three primaries and a massless particle. The orbits of the primaries are elliptic, and the massless particle moves under the mutual gravitational attraction. From the dynamic equations, a quasi-integral is obtained, which is similar to the Jacobi integral in the circular restricted three-body problem (CRTBP). The energy constant \(C\) determines the topology of zero velocity surfaces, which bifurcate at the equilibrium point. We define the concept of Hill stability in this problem, and a criterion for stability is deduced. If the actual energy constant \(C_{\mathrm{ac}}\ ( {>} 0 ) \) is bigger than or equal to the critical energy constant \(C_{\mathrm{cr}}\), the particle will be Hill stable. The critical energy constant is determined by the mass and orbits of the primaries. The criterion provides a way to capture an asteroid into the Earth–Moon system.  相似文献   

8.
We consider a class of Hamiltonian systems with two degrees of freedom with singularities. This class includes several symmetric subproblems of the $n$ -body problem where the singularities are due to collisions involving two or more bodies. “Schubart-like” periodic orbits having two collisions in one period, are present in most of these subproblems. The purpose of this paper is to study the existence of families of such a periodic orbits in a general setting. The blow up techniques of total collision and infinity are applied to our class of Hamiltonian system. This allows us to derive sufficient conditions to ensure the existence of families of double symmetric “Schubart-like” periodic orbits having many singularities. The orbits in the family can be parametrized by the number of singularities in one period. The results are applied to some subproblems of the gravitational $n$ -body problem.  相似文献   

9.
We examine the stability of the triangular Lagrange points L 4 and L 5 for secondary masses larger than the Gascheau??s value ${\mu_{\rm G}= (1-\sqrt{23/27}/2)= 0.0385208\ldots}$ (also known as the Routh value) in the restricted, planar circular three-body problem. Above that limit the triangular Lagrange points are linearly unstable. Here we show that between??? G and ${\mu \approx 0.039}$ , the L 4 and L 5 points are globally stable in the sense that a particle released at those points at zero velocity (in the corotating frame) remains in the vicinity of those points for an indefinite time. We also show that there exists a family of stable periodic orbits surrounding L 4 or L 5 for ${\mu \ge \mu_G}$ . We show that??? G is actually the first value of a series ${\mu_0 (=\mu_G), \mu_1,\ldots, \mu_i,\ldots}$ corresponding to successive period doublings of the orbits, which exhibit ${1, 2, \ldots, 2^i,\ldots}$ cycles around L 4 or L 5. Those orbits follow a Feigenbaum cascade leading to disappearance into chaos at a value ${\mu_\infty = 0.0463004\ldots}$ which generalizes Gascheau??s work.  相似文献   

10.
Gravitational capture is a useful phenomenon in the design of the low energy transfer (LET) orbit for a space mission. In this paper, gravitational lunar capture based on the Sun–Earth–Moon bicircular model (BCM) in the restricted four body problem is studied. By the mechanical analysis in the space near the Moon, we first propose a new parameter \(k\) , the corrected ratio of the radial force, to investigate the influence of the radial force on the capture eccentricity in the BCM. Then, a parametric analysis is performed to detect the influences on the corrected ratio \(k\) . Considering the restriction of time-of-flight and corrected ratio, we investigate, respectively, the minimum capture eccentricity and the corrected minimum capture eccentricity. Via numerical analysis, we discover two special regions on the sphere of capture, in which the capture point possesses the global minimum capture eccentricity and corrected capture eccentricity. They denote the optimal capture regions in terms of minimizing the fuel consumption of the maneuver. According to the results obtained, some suggestions on the design of the LET orbit are given.  相似文献   

11.
This paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from \(J_2\) up to \(J_6\), and the tesseral harmonics \(\overline{C}_{22}\) that is of the same magnitude than zonal \(J_2\). In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury–Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury’s gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.  相似文献   

12.
We study the secular dynamics of lunar orbiters, in the framework of high-degree gravity models. To achieve a global view of the dynamics, we apply a frequency analysis (FA) technique which is based on Prony’s method. This allows for an extensive exploration of the eccentricity ( $e$ )—inclination ( $i$ ) space, based on short-term integrations ( $\sim $ 8 months) over relatively high-resolution grids of initial conditions. Different gravity models are considered: 3rd, 7th and 10th degree in the spherical harmonics expansion, with the main perturbations from the Earth being added. Since the dynamics is mostly regular, each orbit is characterised by a few parameters, whose values are given by the spectral decomposition of the orbital elements time series. The resulting frequency and amplitude maps in ( $e_0,i_0$ ) are used to identify the dominant perturbations and deduce the “minimum complexity” model necessary to capture the essential features of the long-term dynamics. We find that the 7th degree zonal harmonic ( $J_7$ term) is of profound importance at low altitudes as, depending on the initial secular phases, it can lead to collision with the Moon’s surface within a few months. The 3rd-degree non-axisymmetric terms are enough to describe the deviations from the 1 degree-of-freedom zonal problem; their main effect is to modify the equilibrium value of the argument of periselenium, $\omega $ , with respect to the “frozen” solution ( $\omega =\pm 90^{\circ }, \forall \Omega $ , where $\Omega $ is the nodal longitude). Finally, we show that using FA on a fine grid of initial conditions, set around a suitably chosen ‘first guess’, one can compute an accurate approximation of the initial conditions of a periodic orbit.  相似文献   

13.
In this paper we study the existence of a Smale horseshoe in a planar circular restricted four-body problem. For this planar four-body system there exists a transversal homoclinic orbit, but the fixed point is a degenerate saddle, so that the standard Smale–Birkhoff homoclinic theorem cannot be directly applied. We therefore apply the Conley–Moser conditions to prove the existence of a Smale horseshoe. Specifically, we first use the transversal structure of stable and unstable manifolds to make a linear transformation and then introduce a nonlinear Poincaré map $P$ by considering the truncated flow near the degenerate saddle; based on this Poincaré map $P$ , we define an invertible map $f$ , which is a composite function; by carefully checking the satisfiability of the Conley–Moser conditions for $f$ we finally prove that $f$ is a Smale horseshoe map, which implies that our restricted four-body problem has the chaotic dynamics of the Smale horseshoe type.  相似文献   

14.
We present estimates of the size of the analytic domain of stability for co-orbital motions obtained by a high order normal form in the framework of the elliptic restricted three body problem. As a demonstration example, we consider the motion of a Trojan body in an extrasolar planetary system with a giant planet of mass parameter $\mu =0.005$ μ = 0.005 and eccentricity $e^{\prime }=0.1$ e ′ = 0.1 . The analysis contains three basic steps: (i) derivation of an accurate expansion of the Hamiltonian, (ii) computation of the normal form up to an optimal order (in the Nekhoroshev sense), and (iii) computation of the optimal size of the remainder at various values of the action integrals (proper elements) of motion. We explain our choice of variables as well as the method used to expand the Hamiltonian so as to ensure a precise model. We then compute the normal form up to the normalisation order $r=50$ r = 50 by use of a computer-algebraic program. We finally estimate the size $||R||$ | | R | | of the remainder as a function of the normalization order, and compute the optimal normalization order at which the remainder becomes minimum. It is found that the optimal value $\log (||R_{opt}||)$ log ( | | R o p t | | ) can serve in order to construct a stability map for the domain of co-orbital motion using only series. This is compared to the stability map found by a purely numerical approach based on chaotic indicators.  相似文献   

15.
We investigate the dynamics of two satellites with masses $\mu _s$ and $\mu '_s$ orbiting a massive central planet in a common plane, near a first order mean motion resonance $m+1{:}m$ (m integer). We consider only the resonant terms of first order in eccentricity in the disturbing potential of the satellites, plus the secular terms causing the orbital apsidal precessions. We obtain a two-degrees-of-freedom system, associated with the two critical resonant angles $\phi = (m+1)\lambda ' -m\lambda - \varpi $ and $\phi '= (m+1)\lambda ' -m\lambda - \varpi '$ , where $\lambda $ and $\varpi $ are the mean longitude and longitude of periapsis of $\mu _s$ , respectively, and where the primed quantities apply to $\mu '_s$ . We consider the special case where $\mu _s \rightarrow 0$ (restricted problem). The symmetry between the two angles $\phi $ and $\phi '$ is then broken, leading to two different kinds of resonances, classically referred to as corotation eccentric resonance (CER) and Lindblad eccentric Resonance (LER), respectively. We write the four reduced equations of motion near the CER and LER, that form what we call the CoraLin model. This model depends upon only two dimensionless parameters that control the dynamics of the system: the distance $D$ between the CER and LER, and a forcing parameter $\epsilon _L$ that includes both the mass and the orbital eccentricity of the disturbing satellite. Three regimes are found: for $D=0$ the system is integrable, for $D$ of order unity, it exhibits prominent chaotic regions, while for $D$ large compared to 2, the behavior of the system is regular and can be qualitatively described using simple adiabatic invariant arguments. We apply this model to three recently discovered small Saturnian satellites dynamically linked to Mimas through first order mean motion resonances: Aegaeon, Methone and Anthe. Poincaré surfaces of section reveal the dynamical structure of each orbit, and their proximity to chaotic regions. This work may be useful to explore various scenarii of resonant capture for those satellites.  相似文献   

16.
This paper summarises an investigation of chaos in a toy potential which mimics much of the behaviour observed for the more realistic triaxial generalisations of the Dehnen potentials, which have been used to model cuspy triaxial galaxies both with and without a supermassive black hole. The potential is the sum of an anisotropic harmonic oscillator potential, ${\text{V}}_{\text{0}} = \frac{1}{2}\left( {a^2 x^2 + b^2 y^2 + c^2 z^2 } \right)$ , and aspherical Plummer potential, ${\text{V}}_{\text{P}} = M_{BH} /\sqrt {r^2 + \varepsilon ^2 } $ , with $r^2 = x^2 + y^2 + z^2$ . Attention focuses on three issues related tothe properties of ensembles of chaotic orbits which impact on chaotic mixing and the possibility of constructing self-consistent equilibria:(1) What fraction of the orbits are chaotic? (2) How sensitive are the chaotic orbits, that is, how large are their largest (short time) Lyapunov exponents? (3) To what extent is the motion of chaotic orbits impeded by Arnold webs, that is, how 'sticky' are the chaotic orbits? These questions are explored as functions of the axis ratio a: b: c, black hole mass M BH, softening length ε, and energy E with the aims of understanding how the manifestations of chaos depend onthe shape of the system and why the black hole generates chaos. The simplicity of the model makes it amenable to a perturbative analysis. That it mimics the behaviour of more complicated potentials suggests that much of this behaviour should be generic.  相似文献   

17.
We present a detailed investigation of the dramatic changes that occur in the \(\mathcal {L}_1\) halo family when radiation pressure is introduced into the Sun–Earth circular restricted three-body problem (CRTBP). This photo-gravitational CRTBP can be used to model the motion of a solar sail orientated perpendicular to the Sun-line. The problem is then parameterized by the sail lightness number, the ratio of solar radiation pressure acceleration to solar gravitational acceleration. Using boundary-value problem numerical continuation methods and the AUTO software package (Doedel et al. in Int J Bifurc Chaos 1:493–520, 1991) the families can be fully mapped out as the parameter \(\beta \) is increased. Interestingly, the emergence of a branch point in the retrograde satellite family around the Earth at \(\beta \approx 0.0387\) acts to split the halo family into two new families. As radiation pressure is further increased one of these new families subsequently merges with another non-planar family at \(\beta \approx 0.289\) , resulting in a third new family. The linear stability of the families changes rapidly at low values of \(\beta \) , with several small regions of neutral stability appearing and disappearing. By using existing methods within AUTO to continue branch points and period-doubling bifurcations, and deriving a new boundary-value problem formulation to continue the folds and Krein collisions, we track bifurcations and changes in the linear stability of the families in the parameter \(\beta \) and provide a comprehensive overview of the halo family in the presence of radiation pressure. The results demonstrate that even at small values of \(\beta \) there is significant difference to the classical CRTBP, providing opportunity for novel solar sail trajectories. Further, we also find that the branch points between families in the solar sail CRTBP provide a simple means of generating certain families in the classical case.  相似文献   

18.
We study the capture and crossing probabilities in the 3:1 mean motion resonance with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar restricted three-body problem based on the symplectic mapping of Hadjidemetriou (Celest Mech Dyn Astron 56:563–599, 1993), adding the secular variations of the orbit of Jupiter and non-symplectic terms to simulate the migration. We found that, for fast migration rates, the captures occur at discrete windows of initial eccentricities whose specific locations depend on the initial resonant angles, indicating that the capture phenomenon is not probabilistic. For slow migration rates, these windows become narrower and start to accumulate at low eccentricities, generating a region of mutual overlap where the capture probability tends to 100 %, in agreement with the theoretical predictions for the adiabatic regime. Our simulations allow us to predict the capture probabilities in both the adiabatic and non-adiabatic cases, in good agreement with results of Gomes (Celest Mech Dyn Astron 61:97–113, 1995) and Quillen (Mon Not RAS 365:1367–1382, 2006). We apply our model to the case of the Vesta asteroid family in the same context as Roig et al. (Icarus 194:125–136, 2008), and found results indicating that the high capture probability of Vesta family members into the 3:1 mean motion resonance is basically governed by the eccentricity of Jupiter and its secular variations.  相似文献   

19.
E.W. Brown conjectured (1911) that the family of the long-periodic orbits in the Troian case of the restricted problem of three bodies terminates in an asymptotic orbit passing through the Lagrangian point L3 at t=±∞. In 1977 the author showed that such an orbit deviates from L3 by the epicyclic term mg (±∞). It is shown here that $$g\left( { \pm \infty } \right) = 0,$$ so that the Brown conjecture regarding L3 is false. Contrary to what Brown believed, there is an entire family ofhomoclinic orbits, doubly asymptotic to short-periodic orbits around L3. In the complex z-plane of the Poincaré eccentric variables, the latter orbits are circles of radius mR, with R bounded away from zero. The kinematics of the homoclinic family is investigated here in some detail.  相似文献   

20.
The object of study is the geodesic structure of a \(z=2\) Lifshitz black hole in 3+1 space–time dimensions, which is an exact solution to the Einstein-scalar-Maxwell theory. The motion of massless and massive particles in this background is researched using the standard Lagrangian procedure. Analytical expressions are obtained for radial and angular motions of the test particles, where the polar trajectories are given in terms of the \(\wp \) -Weierstraß elliptic function. It will be demonstrated that an external observer can see that photons with radial motion arrive at spatial infinity in a finite coordinate time. For particles with non-vanished angular momentum, the motion is studied on the invariant plane \(\phi = \pi /2\) and, it is shown that bounded orbits are not allowed for this space–time on this plane. These results are consistent with other recent studies on Lifshitz black holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号