首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The cause of the correlation between cloud cover and cosmic ray intensity is still a subject of discussion. The atmospheric transparency is the primary signature of the atmospheric state. The ability to use neutron monitor and Cherenkov telescope data in order to study atmospheric processes is demonstrated. The recently designed lead free neutron monitor at the Basic Environmental Observatory Moussala (42.11N, 23.35E, 2925 m a.s.l.) is described. The possibility to use Cherenkov telescope measurements for estimation of atmospheric transparency is demonstrated on the basis of Monte Carlo simulations and experimental data. The Monte Carlo simulations are carried out with CORSIKA code assuming FLUKA and QGSJET II hadron interaction models. Experimental data from Cherenkov telescope are presented. Several physical mechanisms related to the influence of cosmic rays on the cloud cover, respectively, the atmospheric transparency are widely discussed.  相似文献   

2.
Ionization of the earth’s atmosphere by solar and galactic cosmic rays   总被引:1,自引:0,他引:1  
A brief review of the research of atmospheric effects of cosmic rays is presented. Numerical models are discussed, that are capable to compute the cosmic ray induced ionization at a given location and time. Intercomparison of the models, as well as comparison with fragmentary direct measurements of the atmospheric ionization, validates their applicability for the entire atmosphere and the whole range of the solar activity level variations. The effect of sporadic solar energetic particle events is shown to be limited on the global scale, even for the most severe event, but can be very strong locally in polar regions, affecting the physical-chemical properties of the upper atmosphere, especially at high altitudes. Thus, a new methodology is presented to study cosmic ray induced ionization of the atmosphere in full detail using realistic numerical models calibrated to direct observations.  相似文献   

3.
An original model of atmospheric wave propagation from ground sources to the ionosphere in the atmosphere with a realistic high-altitude temperature profile is analyzed. Shaping of a narrow domain with elevated pressure in the resonance region where the horizontal phase wave velocity is equal to the sound velocity is examined theoretically within the framework of linearized Eq.s. Numerical simulations for the model profiles of atmospheric temperature and viscosity confirm analytical result for the special feature of wave fields. The formation of the narrow domain with plasma irregularities in the D and low E ionospheric layers caused by the acoustic gravity wave singularity is discussed.  相似文献   

4.
In this paper, we present a new calculation of the atmospheric neutrino flux in the energy range 10–107 GeV, which reveals sizable differences in muon neutrino flux predictions obtained with known hadronic models. The calculation is based on the method of solving nuclear cascade equations in the atmosphere, which takes into account the nonscaling behavior of inclusive cross sections for particle production, the increase in the total inelastic hadron-nucleus cross sections, and the non-power-law character of the primary cosmic ray spectrum. The efficiency of the method was recently tested in atmospheric muon flux calculations. The results of neutrino spectrum calculations have been compared with Frejus, AMANDA-II, and IceCube measurement data.  相似文献   

5.
The paper presents the results of numerical photochemical simulations of the impact of the most powerful solar proton flares during the 23rd solar cycle on the ozonosphere in the polar regions of the Earth. A global 3D photochemical model, CHARM, developed at Central Aerological Observatory (CAO) was used in the simulations. The model introduces an additional source of nitrogen atoms and OH radicals. These components are formed due to the ionization effect of solar protons in the Earth’s atmosphere. The ionization rate was determined from data on proton fluxes measured by GOES satellites. The production rate of additional NO x and HО x molecules per ion pair was based on published theoretical studies. It is shown that the most intense flares in the 23rd solar cycle (2000, 2001, and 2003) destroyed ozone in the mesosphere to a great extent (sometimes completely, for example, during the July 14, 2000, event). It is found that the response of ozone to solar proton events follows a seasonal pattern. For the first time, the long-term effect of solar proton events is identified; it is approximately one year.  相似文献   

6.
The dynamics of the free groundwater table influence land surface soil moisture and energy balance components, and are therefore also linked to atmospheric processes. In this study, the sensitivity of the atmosphere to groundwater table dynamics induced heterogeneity in land surface processes is examined under convective conditions. A fully coupled subsurface–land surface–atmosphere model is applied over a 150 km × 150 km study area located in Western Germany and ensemble simulations are performed over two convective precipitation events considering two separate model configurations based on groundwater table dynamics. Ensembles are generated by varying the model atmospheric initial conditions following the prescribed ensemble generation method by the German Weather Service in order to account for the intrinsic, internal atmospheric variability. The results demonstrate that especially under strong convective conditions, groundwater table dynamics affect atmospheric boundary layer height, convective available potential energy, and precipitation via the coupling with land surface soil moisture and energy fluxes. Thus, this study suggests that systematic uncertainties may be introduced to atmospheric simulations if groundwater table dynamics are neglected in the model.  相似文献   

7.
Recent observations and missions to Mars have provided us with new insight into the past habitability of Mars and its history. At the same time they have raised many questions on the planet evolution. We show that even with the few data available we can propose a scenario for the evolution of the Martian atmosphere in the last three billion years. Our model is obtained with a back integration of the Martian atmosphere, and takes into account the effects of volcanic degassing, which constitutes an input of volatiles, and atmospheric escape into space. We focus on CO2, the predominant Martian atmospheric gas.Volcanic CO2 degassing rates are obtained for different models of numerical model crust production rates [Breuer, D., Spohn, T. 2003. Early plate tectonics versus single-plate tectonics on Mars: Evidence from magnetic field history and crust evolution. J. Geophys. Res. - Planets, 108, E7, 5072, Breuer, D., Spohn, T., 2006. Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54 (2006) 153–169; Manga, M., Wenzel, M., Zaranek, S.E., 2006. Mantle Plumes and Long-lived Volcanism on Mars as Result of a Layered Mantle. American Geophysical Union Fall Meeting 2006, Abstract #P31C-0149.] and constrained on observation. By estimating the volatile contents of the lavas, the amount of volatiles released in the atmosphere is estimated for different scenarios. Both non-thermal processes (related to the solar activity) and thermal processes are studied and non-thermal processes are incorporated in our modelling of the escape [Chassefière, E., Leblanc, F., Langlais, B., 2006, The combined effects of escape and magnetic field history at Mars. Planet. Space Sci. Volume 55, Issue 3, Pages 343–357.]. We used measurements from ASPERA and Mars Express and these models to estimate the amount of lost atmosphere.An evolution of the CO2 pressure consistent with its present state is then obtained. A crustal production rate of at least 0.01 km3/year is needed for the atmosphere to be at steady state. Moreover, we show that for most of the scenarios a rapid loss of the primary (and primordial) atmosphere due to atmospheric escape is required in the first 2 Gyr in order to obtain the present-day atmosphere. When CO2 concentration in the mantle is high enough (i.e. more than 800 ppm), our results imply that present-day atmosphere would have a volcanic origin and would have been created between 1 Gyr and 2 Gyr ago even for models with low volcanic activity. If the volcanic activity and the degassing are intense enough, then the atmosphere can even be entirely secondary and as young as 1 Gyr. However, with low activity and low CO2 concentration (less than 600 ppm), the present-day atmosphere is likely to be for the major part primordial.  相似文献   

8.
This study reports results from an analysis of the relationship between atmospheric forcing and model‐simulated water and energy fluxes for the North American Land Data Assimilation System Project Phase 2 (NLDAS‐2). The relationships between mean monthly precipitation and total runoff are stronger in the Sacramento (SAC) and variable infiltration capacity (VIC) models, which grew out of the hydrological community, than in the Noah and Mosaic models, which grew out of the soil‐vegetation‐atmosphere transfer (SVAT) community. The reverse is true for the relationship between mean monthly precipitation and evapotranspiration. In addition, surface energy fluxes in VIC are less sensitive to model forcing (except for air temperature) than those in the Noah and Mosaic model. Notwithstanding these general conclusions, the relationships between forcings and model‐simulated water and energy fluxes for all models vary for different seasons, variables, and regions. These findings will ultimately inspire a combination of SVAT‐type model energy components with hydrological model water components to develop a SVAT‐hydrology model to improve both evapotranspiration and total runoff simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35–90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).  相似文献   

10.
The interaction between the atmosphere and the underlying solid mantle is oneof the most important sources of changes in all three components of theEarth's rotation vector on different time scales. In this paper the NCEP/NCARreanalysis time series of four times daily atmospheric effective angularmomentum (EAM) estimates is used to investigate some selected aspects of theatmospheric influence on Earth rotation. Emphasis is placed on thecontroversial features which were difficult or impossible to study using theoperational EAM data, such as excitation of the free oscillations in polarmotion, the Chandler wobble (CW) and the free core nutation (FCN), or theroles of diurnal and semidiurnal atmospheric tides and atmospheric normalmodes in the rotational dynamics of the Earth.  相似文献   

11.
Meng  Zhiyong  Zhang  Fuqing  Luo  Dehai  Tan  Zhemin  Fang  Juan  Sun  Jianhua  Shen  Xueshun  Zhang  Yunji  Wang  Shuguang  Han  Wei  Zhao  Kun  Zhu  Lei  Hu  Yongyun  Xue  Huiwen  Ma  Yaping  Zhang  Lijuan  Nie  Ji  Zhou  Ruilin  Li  Sa  Liu  Hongjun  Zhu  Yuning 《中国科学:地球科学(英文版)》2019,62(12):1946-1991
Synoptic meteorology is a branch of meteorology that uses synoptic weather observations and charts for the diagnosis,study,and forecasting of weather.Weather refers to the specific state of the atmosphere near the Earth's surface during a short period of time.The spatial distribution of meteorological elements in the atmosphere can be represented by a variety of transient weather phenomena,which are caused by weather systems of different spatial and temporal scales.Weather is closely related to people's life,and its development and evolution have always been the focus of atmospheric scientific research and operation.The development of synoptic meteorology is closely related to the development of observation systems,dynamical theories and numerical models.In China,observation networks have been built since the early 1950 s.Up to now,a comprehensive meteorological observation systembased on ground,air and space has been established.In particular,the development of a new generation of dense radar networks,the development of the Fengyun satellite series and the implementation of a series of large field experiments have brought our understanding of weather from large-scale environment to thermal dynamics,cloud microphysical structure and evolution characteristics of meso and micro-scale weather systems.The development of observation has also promoted the development of theory,numerical model and simulation.In the early days,China mainly used foreign numerical models.Lately,China has developed numerical model systems with independent intellectual property rights.Based on the results of high-resolution numerical simulations,in-depth understanding of the initiation and evolution mechanism and predictability of weather at different scales has been obtained.Synoptic meteorology has gradually changed from an initially independent development to a multidisciplinary approach,and the interaction between weather and the change of climate and environment has become a hot and frontier topic in atmospheric science.This paper reviews the important scientific and technological achievements made in China over the past 70 years in the fields of synoptic meteorology based on the literatures in China and abroad,from six aspects respectively including atmospheric dynamics,synoptic-scale weather,typhoon and tropical weather,severe convective weather,numerical weather prediction and data assimilation,weather and climate,atmospheric physics and atmospheric environment.  相似文献   

12.
During the next decade and beyond, climate system models will be challenged to resolve scales and processes that are far beyond their current scope. Each climate system component has its prototypical example of an unresolved process that may strongly influence the global climate system, ranging from eddy activity within ocean models, to ice streams within ice sheet models, to surface hydrological processes within land system models, to cloud processes within atmosphere models. These new demands will almost certainly result in the develop of multiresolution schemes that are able, at least regionally, to faithfully simulate these fine-scale processes. Spherical centroidal Voronoi tessellations (SCVTs) offer one potential path toward the development of a robust, multiresolution climate system model components. SCVTs allow for the generation of high-quality Voronoi diagrams and Delaunay triangulations through the use of an intuitive, user-defined density function. In each of the examples provided, this method results in high-quality meshes where the quality measures are guaranteed to improve as the number of nodes is increased. Real-world examples are developed for the Greenland ice sheet and the North Atlantic ocean. Idealized examples are developed for ocean–ice shelf interaction and for regional atmospheric modeling. In addition to defining, developing, and exhibiting SCVTs, we pair this mesh generation technique with a previously developed finite-volume method. Our numerical example is based on the nonlinear, shallow-water equations spanning the entire surface of the sphere. This example is used to elucidate both the po tential benefits of this multiresolution method and the challenges ahead.  相似文献   

13.
A review of experiments in which arrays of recording magnetometers deployed over an area of land to study induction problems is presented. Intensive array activities take place on a continual basis in North America, Australia, Scotland and Africa and array studies have been conducted in India, Scandinavia, and Russia. The main results are summarised. Analysis, presentation and interpretation of array data have also enjoyed significant developments which are discussed with illustrations. The use of multi-techniques in the analysis of array data has improved the reliability of the interpretational inferences. One-dimensional conductivity profiles can now be deduced by the simple inversion of the inductive response functionC(w, t) estimated from the vertical field Z and spatial gradient of the horizontal field components (ΔXxYy) of magnetometer array data with large gradient. Bounds can be placed on accepted profiles using the Monte Carlo process just as it is done in magnetotelluric data inversion. The results from array studies continue to improve our understanding of the synthesis of realistic tectonic models of the continents. The structure under some geothermal zones are now known through a number of recent studies.  相似文献   

14.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

15.
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm−2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.  相似文献   

16.
The model values of the mantle quality factor Q=40±20 and the Chandler wobble period T=435–436 days are obtained by numerical modeling of the yearly and Chandler components in the pole motion from data on the angular momenta of the atmosphere and the ocean. The oceanic and the atmospheric excitations account for about 65–70% of the dispersion of the observed pole motion.  相似文献   

17.
The uncertainties associated with atmosphere‐ocean General Circulation Models (GCMs) and hydrologic models are assessed by means of multi‐modelling and using the statistically downscaled outputs from eight GCM simulations and two emission scenarios. The statistically downscaled atmospheric forcing is used to drive four hydrologic models, three lumped and one distributed, of differing complexity: the Sacramento Soil Moisture Accounting (SAC‐SMA) model, Conceptual HYdrologic MODel (HYMOD), Thornthwaite‐Mather model (TM) and the Precipitation Runoff Modelling System (PRMS). The models are calibrated based on three objective functions to create more plausible models for the study. The hydrologic model simulations are then combined using the Bayesian Model Averaging (BMA) method according to the performance of each models in the observed period, and the total variance of the models. The study is conducted over the rainfall‐dominated Tualatin River Basin (TRB) in Oregon, USA. This study shows that the hydrologic model uncertainty is considerably smaller than GCM uncertainty, except during the dry season, suggesting that the hydrologic model selection‐combination is critical when assessing the hydrologic climate change impact. The implementation of the BMA in analysing the ensemble results is found to be useful in integrating the projected runoff estimations from different models, while enabling to assess the model structural uncertainty. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Nitrogen oxides, produced as a result of ionizing proton impacts, have long lifetimes and substantially affect the ozone balance. Photochemical models give an increased production level of nitrogen oxides during solar proton flares. The usage of an increased NO production effectiveness value (molecule number per each ion pair) during increased ionization of the atmosphere in models can be among the causes. This value has been estimated based on satellite observational data. Data on the solar proton fluxes and the composition of the atmosphere have been used. The period of the proton event of July 14, 2000, has been considered. The NO production effectiveness, obtained when the observational data were analyzed, was much smaller than the value obtained previously theoretically. The causes of these differences should be studied additionally.  相似文献   

19.
The observations of the state of the midlatitude ionospheric D region during the March 29, 2006, solar eclipse, based on the measurements of the characteristics of partially reflected HF signals and radio noise at a frequency of f = 2.31 MHz, are considered. It has been established that the characteristic processes continued for 2–4 h and were caused mainly by atmospheric gas cooling, decrease in the ionization rate, and the following decrease in the electron density. An increase in the electron density on average by 200–250% approximately 70–80 min after the eclipse beginning at altitudes of 90–93 km and approximately 240 min after the end of the solar eclipse at altitudes of 81–84 km, which lasted about 3–4 h, has been detected experimentally. This behavior of N is apparently caused by electron precipitation from the magnetosphere into the atmosphere during and after the solar eclipse. Based on this hypothesis, the fluxes of precipitating electrons (about 107–108 m?2s?1) have been estimated using the experimental data.  相似文献   

20.
Using the data on solar proton fluxes measured on board the GOES satellites, the most powerful solar proton events (SPEs) of solar cycle 23 are selected, and ionization rates in the atmosphere in these periods at high latitudes of the Northern Hemisphere are calculated. Assuming that each ion pair formed at the retardation of solar protons in the atmosphere leads to the formation of 1.25 molecules of nitric oxide, 2.0 molecules of the OH radical, and one oxygen atom, changes in the content of ozone, nitrogen and other compounds were calculated using a photochemical model. The calculations showed that the strongest ionization and destruction of ozone was caused by SPEs that occurred on July 14, 2000; November 8, 2000; November 4, 2001; and October 28, 2003. The results can form the basis for compiling the catalog of changes in ionization and ozone in the atmosphere caused by solar proton activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号