首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The hypothesis that benthic foraminifera are useful proxies of local methane emissions from the seafloor has been verified on sediment core KS16 from the headwall of the Ana submarine landslide in the Eivissa Channel, Western Mediterranean Sea. The core MS312 from a nearby location with no known methane emissions is utilised as control. The core was analysed for biostratigraphy, benthic foraminiferal assemblages, Hyalinea balthica and Uvigerina peregrina carbon and oxygen stable isotope composition, and sedimentary structures. The upper part of the core records post-landslide deglacial and Holocene normal marine hemipelagic sediments with highly abundant benthic foraminifera species that are typical of outer neritic to upper bathyal environment. In this interval, the δ13C composition of benthic foraminifera indicates normal marine environment analogous to those found in the control core. Below the sedimentary hiatus caused by the emplacement of the slide, the foraminiferal assemblages are characterised by lower density and higher Shannon Index. Markedly negative δ13C shifts in benthic foraminifera are attributed to the release of methane through the seabed. The mean values of the 13C anomaly in U. peregrina are ? 0.951 ± 0.208 in the pre-landslide sediments, and ? 0.269 ± 0.152 in post-slide reworked sediments deposited immediately above the hiatus. The δ13C anomaly in Hyalinea balthica is ? 2.497 ± 0.080 and ? 2.153 ± 0.087, respectively. To discard the diagenetic effects on the δ13C anomaly, which could have been induced by Ca–Mg replacement and authigenic carbonate overgrowth on foraminifera tests, a benthic foraminifera subsample has been treated following an oxidative and reductive cleaning protocol. The cleaning has resulted, only in some cases, in a slight reduction of the anomaly by 0.95% for δ13C and < 0.80% for δ18O. Therefore, the first conclusion is that the diagenetic alteration is minor and it does not alter significantly the overall carbon isotopic anomaly in the core. Consequently, the pre-landslide sediments have been subject to pervasive methane emissions during a time interval of several thousand years. Methane emissions continued during and immediately after the occurrence of Ana Slide at about 61.5 ka. Subsequently, methane emissions decreased and definitely ceased during the last deglaciation and the Holocene.  相似文献   

2.
In order to assess the possible environmental impact of oily cuttings discharged during oil exploration activities, we studied the benthic foraminiferal faunas in a five-station, 4-km-long sampling transect around a cuttings disposal site at about 670 m depth offshore Angola (W Africa), where drilling activities started 1.5 years before sampling. Living (Rose Bengal stained) and dead foraminiferal faunas were sampled in March 2006. The faunal patterns mirror the spatial distribution of hydrocarbons, which are dispersed into a southeastern direction. Four different areas can be distinguished on the basis of the investigated faunal parameters (density, diversity and species composition of the living fauna, and comparison with subrecent dead faunas). The fauna at station S31, 300 m SE of the oil cuttings disposal site, appears to be clearly impacted: the faunal density and diversity are maximal, but evenness is minimal. Taxa sensitive to organic enrichment, such as Uvigerina peregrina, Cancris auriculus and Cribrostomoides subglobosus, have largely disappeared, whereas the low-oxygen-resistant taxon Chilostomella oolina and opportunistic buliminids and bolivinids attain relatively high densities. At station S32, 500 m SE of the disposal site, environmental impact is still perceptible. The faunal density is slightly increased, and U. peregrina, apparently the most sensitive species, is still almost absent. The faunas found at 1 and 1.8 km SE of the disposal site are apparently no longer impacted by the drill mud disposal. Faunal density and diversity are low, and the faunal composition is typical for a mesotrophic to eutrophic upper slope environment. Finally, Station S35, 2 km NW of the disposal site, contains an intermediate fauna, where both the low-oxygen-resistant C. oolina and the more sensitive taxa (U. peregrina, C. auriculus and C. subglobosus) are present. All taxa live close to the sediment–water interface here, indicating a reduced oxygen penetration into the sediment. Since the hydrocarbon concentration is low at this station, it appears that the faunal characteristics are the consequence of a slightly different environmental setting, and not due to a contamination with drill cuttings. Our data underline the large potential of benthic foraminifera as bio-indicators of anthropogenic enrichment in open marine settings, such as caused by the disposal of oily drill cuttings. The foraminiferal faunas react essentially by a density increase of a number of tolerant and/or opportunistic taxa, and a progressive disappearance of more sensitive taxa in the most impacted area. Rather surprisingly, large-sized taxa appear to be more sensitive than small-sized foraminiferal taxa.  相似文献   

3.
In this paper, we investigate the ecology of live (rose Bengal stained) benthic foraminifera collected at 20 stations ranging from 15 to 100 m depth in the Rhône prodelta (Gulf of Lions, NW Mediterranean). These sites were sampled in September 2006, five months after the Rhône River annual flood. Statistical analyses based on foraminiferal communities (> 150 μm) divide our study area into six main biofacies directly related to environmental conditions. Miliolid species are abundant in the relict prodeltaic lobe which is characterised by sand with low organic matter content. Close to the river mouth, the limited oxygen penetration in the sediment combined with important hydro-sedimentary processes constitute stressful conditions for foraminiferal faunas dominated by opportunistic species (e.g. Leptohalysis scottii). With increasing distance from the river mouth, foraminiferal faunas (e.g. Nonionella turgida, Eggerella scabra) adapted to thrive in sediments enriched in Rhône-derived organic matter under more stable hydro-sedimentary conditions appear. In the distal part of the Rhône River influence, benthic species (e.g. Valvulineria bradyana, Textularia agglutinans) living in fine sediment enriched in both continental and marine organic compounds emerge. At the deepest stations located in the south-eastern part of our study area, benthic foraminiferal faunas (e.g. Bulimina aculeata, Melonis barleeanus, Bigenerina nodosaria) are highly diverse, underlining stable environmental conditions characterised by marine-derived organic matter supplies and relatively deep oxygen penetration depth in the sediment. We also compare foraminiferal faunas sampled in September 2006 with communities sampled in June 2005, one month after the Rhône River annual flood (Mojtahid et al., 2009). This comparison suggests that opportunistic species (e.g. B. aculeata, Cassidulina carinata, V. bradyana) have responded to organic matter inputs related to marine primary production in June 2005.  相似文献   

4.
Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0–1 cm, >63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray–Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species (Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and/or living cold-water coral ecosystems. Our results also emphasise the importance of studying the small size fractions that yield many infaunal species. A causal link exists between distribution patterns of benthic foraminifera and cold-water coral facies, thus providing an independent tool to identify and describe the different facies in this setting.  相似文献   

5.
Assemblages of live (Rose-Bengal-stained) and dead benthic foraminifera and stable oxygen and carbon isotopic composition of live benthic foraminifera were studied in and outside a bacterial mat composed of the large sulphur-oxidizing bacteria Thioploca and Beggiatoa from the oxygen-minimum zone off Pakistan (NE Arabian Sea). Two cores from the same Multicorer retrieved a bacterial mat and ambient sediment. The dominant species (Globobulimina affinis, G. turgida, Bolivina pacifica, B. pseudopunctata, Uvigerina peregrina and Buliminella tenuata) in both cores are characteristic for dysoxic oxygen minimum zone conditions. The most significant difference between the two cores is the reduced number of stained benthic foraminifera (SBF) in the top 0.5 cm of the bacterial mat. Faunal densities of stained species are more than four times higher in the sediment surface sample (0–0.5 cm) outside the bacterial mat, at a distance of only 1.5 m. All stained species, however, observed outside the Beggiatoa/Thioploca mat were also observed in the core with the mat. Two species, Virgulinella fragilis and Bolivina dilatata, occur exclusively in the core with the bacterial mat. The diversity within the bacterial mat core is thus slightly higher than outside. Furthermore, the abundances of the species Buliminella morgani, B. tenuata and Alliatina primitiva are substantially higher in the bacterial mat than outside. Globobuliminids, on the other hand, seem to prefer the conditions outside the bacterial mat and are five times more frequent in the core taken outside the bacterial mat. Benthic foraminifers inhabit a broader microhabitat range outside the bacterial mat (∼5 cm) than within (3.5 cm). A marked decrease in SBF abundances was observed at the level of a black sulphur-rich layer which is interpreted to mark the shallow redox front below the bacterial mat. Stable carbon isotope analyses on live benthic foraminifera do not support a relation of the investigated Beggiatoa/Thioploca mat to a constant or seasonal seepage of methane at the continental slope off Pakistan. Surprisingly, however, stable oxygen isotope values of many species and especially of U. peregrina decrease with depth, which calls into question the suitability of U. peregrina as a recorder of bottom-water δ18O.  相似文献   

6.
Rose-Bengal-stained benthic foraminifera in six pilot-core samples and one multicore sample collected from the Hess Rise and Suiko Seamount in August 1994 were studied in order to understand foraminiferal distributions between two areas divided by an oceanic front in the central North Pacific. Samples from the Hess Rise were collected in depths of 2167–3354 m under the warm, saline Kuroshio Extension, while samples from Suiko Seamount came from depths of 1811–1955 m under the cold, less-saline subarctic current. Sediment-trap results for the year prior to our sediment sampling show that organic matter fluxes were about 2.5 times greater at Suiko Seamount than at the Hess Rise. However, the hydrographic structure between 1800 and 3400 m, based on CTD observations, is almost the same at both sites. Temperature decreases from 2.2 to 1.7°C over the depth range of 1800–3400 m, salinity increases from 34.5 to 34.7, and the dissolved oxygen content gradually increases from 1.5 to 3.0 ml l−1. The faunal populations at the Hess Rise are quite different from those at Suiko Seamount. The abundant species at the Hess Rise are Epistominella exigua, Brizalina pacifica, Fursenkoina cedrosensis and Alabaminella weddellensis. These species characteristically inhabit phytodetrital aggregates deposited on an oligotrophic seafloor. The populations at Suiko Seamount are dominated by Triloculina frigida, Lagenammina cf. arenulata, Reophax subfusiformis, and Reophax scorpiurus. The reason for differences between these populations is unclear. However, the typical phytodetritus-dwelling species E. exigua is dominant at the Hess Rise, which is located in a subtropical area that has a pulsed supply of settling organic matter in the spring. On the other hand, E. exigua is rare at Suiko Seamount, a subarctic site where there are more stable and greater fluxes of organic matter in summer and autumn. Occurrences of this species may be related to the seasonally short supply of organic matter that reaches the seafloor in the oceanic North Pacific.  相似文献   

7.
Mass fluxes of diatom opal, planktonic foraminifera carbonate and coccolithophorid carbonate were measured with time-series sediment traps at six sites in the Arabian Sea, Bay of Bengal and Equatorial Indian Ocean (EIOT). The above fluxes were related to regional variations in salinity, temperature and nutrient distribution. Annual fluxes of diatom opal range between 3 and 28 g m−2 yr−1, while planktonic foraminifera carbonate fluxes range between 6 and 23 g m−2 yr−1 and coccolithophorid carbonate fluxes range between 4 and 24 g m−2 yr−1. Annual planktonic foraminifera carbonate to coccolithophorid carbonate ratios range between 0.8 and 2.2 and coccolithophorid carbonate to diatom opal ratios range between 0.5 and 3.3.In the western Arabian Sea, coccolithophorids are the major contributors to biogenic flux during periods of low nutrient concentrations. Coccolithophorid carbonate fluxes decrease and planktonic foraminiferal carbonate and diatom opal fluxes increase when nutrient-rich upwelled waters are advected over the trap site. In the oligotropic eastern Arabian Sea, coccolithophorid carbonate fluxes are high throughout the year. Planktonic foraminiferal carbonate fluxes are the major contributors to biogenic flux in the EIOT. In the northern and central Bay of Bengal, when surface salinity values drop sharply during the SW monsoon, there is a drastic reduction in planktonic foraminiferal carbonate fluxes, but coccolithophorid carbonate and diatom opal fluxes remain steady or continue to increase. Distinctly higher annual molar Sibio/Cinorg (>1) and Corg/Cinorg (>1.5) ratios are observed in the northern and central Bay of Bengal mainly due to lower foraminiferal carbonate production as a result of sharp salinity variations. We can thus infer that the enhanced freshwater supply from rivers should increase oceanic CO2 uptake. Its silicate supply favours the production of diatoms while the salinity drop produces conditions unfavourable for most planktonic foraminifera species.  相似文献   

8.
To investigate a possible influence of submarine methane seepage on benthic foraminiferal communities, Rose Bengal stained (“live”) and empty tests of benthic foraminifera were studied from the sediment surface down to 15 cm sub-bottom depth of 12 sites at the Håkon Mosby mud volcano (HMMV). In addition, one reference site well away from the seep sites, but from similar water depths and the same general hydrographic setting was occupied for comparison. The HMMV is located at 1265 m water depth on the SW Barents Sea continental slope. Distinct living foraminiferal associations at the HMMV are linked to specific sedimentary, microbial, and macrofaunal habitats. In the center of the crater, and in crater areas completely covered by bacterial mats, Cassidulina reniforme is the only, albeit rare, living species. Below the top few millimeters, sediments are anoxic and devoid of living specimens. At the rim of the mud volcano, at sites densely populated by pogonophoran tube worms, three benthic foraminiferal associations are found; (i) a Fontbotia wuellerstorfi–Lobatula lobatula association living attached to the upper parts of pogonophoran tubes, which protrude into oxic water, (ii) a diverse Cassidulina neoteretis association populating dysoxic sediments of the surface centimeter, and (iii) a species-poor Bolivina pseudopunctata association colonizing the subsurface sediments down to four centimeters. Generally, we did not find endemic or seep indicative species or associations at the HMMV. However, the HMMV live faunas dominated by B. pseudopunctata are not found at the reference site nor are they described from comparable water depths and environments without gas seepages from the Norwegian-Greenland Seas.In the center and outer rim of the mud volcano, a C. neoteretis–Reophax guttifer dead association, similar to the one at the reference site, characterizes an assemblage of strongly corroded and partly displaced tests. At bacterial mat sites, a C. reniforme dead association corresponds to the living one. Thus both the living and the dead associations are indicative of a specific bacterial mat environment at the HMMV.  相似文献   

9.
The Mondego estuary fish assemblage was studied for the accumulation of PCBs. Three sampling stations were visited along an estuarine salinity gradient, and, in total, 15 species were collected. Analysis of PCBs revealed no significant differences among the sampling stations, although differences were observed among the fish assemblages. Fish assemblages could be divided into three groups. The first group comprised those with higher concentration (more than 10 ng g 1, dw), included the species Gobius niger, Sardina pilchardus, Anguilla anguilla, Pomatoschistus microps, Chelidonichthys lucerna and Liza ramada; the second group with medium concentration (5–10 ng g 1, dw), included the species Pomatoschistus minutus, Dicentrarchus labrax, Atherina presbyter, Chelon labrosus, Diplodus vulgaris, Platichthys flesus and Cilata mustela; and a third group with low concentration (less than 5 ng g 1, dw), included the species Solea solea and Callionymus lyra. A positive correlation was found between lipid content and PCB concentrations. To evaluate the influence of the residence time of species on the accumulation of PCBs, species were divided into two groups: species that spend more than 3 years in the estuary, and species that spend less than 3 years in the estuary. Species that spend more than 3 years in the estuary presented higher concentrations than species that spend less than 3 years in the estuary. CBs 138 and 153 had higher concentration, and tended to increase with time spent in the estuary.  相似文献   

10.
Although there is a growing body of evidence indicating benthic foraminifera inhabit hydrocarbon and cold seep environments, biochemical and ultrastructural data on seep foraminiferal communities are not available. Therefore, sediments collected from cold seeps in Monterey Bay, CA (900–1000 m), were examined for the presence of live benthic foraminifera. Results from three independent methods (ATP assay, ultrastructural analysis, rose Bengal staining) indicate that certain species inhabit the Clam Flat and Clam Field seeps. Abundances in our seep samples were lower than in comparable non-seep sites, although not atypical for these bathyal depths. Of 38 species represented at these two seep sites by cytoplasm-containing specimens, only Spiroplectammina biformis was restricted to the seep environment. However, because S. biformis is also known from non-seep sites in other areas, it should not be considered as endemic to seeps. Ultrastructural studies show abundant peroxisomes in seep specimens, which may allow inhabitation of such environments. One specimen of Uvigerina peregrina had prokaryotes nestled in test pores, suggesting that bacteria may play a role in the survival of foraminifera in this seep environment.  相似文献   

11.
We conducted an in situ feeding experiment using 13C-labeled unicellular algae in Sagami Bay, Japan (water depth, 1450 m), in order to understand the fate of lipid compounds in phytodetritus at the deep-sea floor. We examined the incorporation of excess 13C into lipid compounds extracted from bulk sediments and benthic foraminiferal cells. 13C-enriched fatty acids derived from 13C-labeled algae were exponentially degraded during 6 days of incubation in the sediment. Subsequent enrichments in 13C in sedimentary n-C15, anteiso-C17, and C17 fatty acids indicated the microbial degradation of algal material and production of bacterial biomass in the sediment. We observed the incorporation of 13C-labeled algal phytol and fatty acids into foraminiferal cells. The compositions of 13C-labeled algal lipids in foraminiferal cells were different from those in the bulk sediments, indicating that foraminiferal feeding and digestion influenced the lipid distribution in the sediments. Furthermore, some sterols in Globobulimina affinis (e.g., 24-ethylcholesta-5,22-dien-3β-ol, 24-ethylcholest-5-en-3β-ol, and 23,24-dimethylcholesta-5,22E-dien-3β-ol) were newly produced via the modification of dietary algal sterols within 4–6 days. In addition to the effects of bacteria, feeding by benthic foraminifera can result in a significant reorganization of the composition of organic matter and influence benthic food webs and carbon cycling at the deep-sea floor.  相似文献   

12.
Dense communities of shallow-water suspension feeders are known to sidestep the microbial loop by grazing on ultraplankton at its base. We quantified the diet, rates of water processing, and abundance of the deep-sea hexactinellid sponge Sericolophus hawaiicus, and found that, like their demosponge relatives in shallow water, hexactinellids are a significant sink for ultraplankton. S. hawaiicus forms a dense bed of sponges on the Big Island of Hawaii between 360 and 460 m depth, with a mean density of 4.7 sponges m−2. Grazing of S. hawaiicus on ultraplankton was quantified from in situ samples using flow cytometry, and was found to be unselective. Rates of water processing were determined with dye visualization and ranged from 1.62 to 3.57 cm s−1, resulting in a processing rate of 7.9±2.4 ml sponge−1 s−1. The large amount of water processed by these benthic suspension feeders results in the transfer of approximately 55 mg carbon and 7.3 mg N d−1 m−2 from the water column to the benthos. The magnitude of this flux places S. hawaiicus squarely within the functional group of organisms that link the pelagic microbial food web to the benthos.  相似文献   

13.
Modern benthic foraminifera are important remineralizers of organic matter and a link between surface-ocean production and life in the deep sea. Assemblages of benthic foraminifera are preserved in the fossil record, providing clues to paleoceanographic conditions. These clues can be fully interpreted only when our knowledge of the biology and ecology of modern species is more complete. To study factors influencing foraminiferal colonization rates, artificial substrates were placed on Cross Seamount (18°40′N, 158°17′W) for 1 to 42 months between 1989 and 1994. The colonization rates of benthic foraminifera onto different substrates (five mineral types were used) at four water depths (800, 975, 1285 and 2000 m) were determined. Both calcareous and agglutinated foraminifera inhabited these artificial substrates at different rates. Many of the agglutinated forms colonized at a uniform rate through time. The colonization rates of other foraminifera, primarily calcareous forms, were not constant through time, nor could the variability be attributed to the controlled variables (water depth and substrate composition). Instead, these temporal variations in colonization rate corresponded with shifts in surface ocean conditions and export fluxes in the central Pacific. Other ecological observations are also presented, including size- and spatial-distributions.  相似文献   

14.
Deep-water benthic algal composition and cover were studied with a submersible on the deep fore reef of Lee Stocking Island, Bahamas, from 45 to 150 m. Algal cover decreased from 57% to 16% over this depth range. Although there was substantial overlap in depth distributions, different species or groups of species dominated benthic cover at different depths. Lobophora and Halimeda copiosa co-dominated the fore reef from 45 to 60 m. A Corallinales/Peyssonnelia group was abundant from 60 to 120 m. The Corallinales/Peyssonnelia group shared dominance with Ostreobium between 90 and 120 m. Ostreobium was the only alga observed below 150 m and remained abundant below 200 m. Movement of sand down the fore reef is recognized as having substantial influence on algal cover.  相似文献   

15.
To describe the larval and juvenile fish fauna and to evaluate the relative contribution of the ocean and the estuary as settlement areas for benthic species, we compared the composition and abundance of larval fish supply to that of recently settled juvenile fishes in both ocean and an adjacent estuary habitats in southern New Jersey. The study was conducted from May to November 1992 in the Great Bay–Little Egg Harbor estuary (<1–8 m sampling depth) and on the adjacent inner continental shelf in the vicinity of Beach Haven Ridge (8–16 m). During the study more larvae nearing settlement (postflexion) were captured in the estuary than in the ocean. Settlement occurred earlier in the estuary than in the ocean perhaps under the influence of earlier, seasonal warming of estuarine waters. There appeared to be two spatial patterns of settlement in the study area based on the dominant species (n = 17) represented by a sufficient number of individuals (n  25 individuals). There were species that primarily settle in the estuary, as represented by both estuarine residents (n = 3) and transients (n = 4), and those that settle in both the estuary and the ocean (n = 10). However, there were no species whose larvae were present in the estuary yet settle in the ocean. The fact that many of the species settle in both the estuary and the ocean indicates an overlap between these habitats because, at least for some species, these habitats may function in the same way. Further resolution of fish settlement patterns, and its influence on recruitment will need to rely on synoptic comparisons between estuaries and the ocean over multiple years.  相似文献   

16.
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (δ18Oshell) of five planktic foraminiferal species. Both the δ18Oshell and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average δ18Oshell of G. ruber (w) from surface sediments is similar to the δ18Oshell values measured from the sediment-trap samples during winter. However, the δ18Oshell of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in δ18Oshell values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their δ18Oshell.  相似文献   

17.
Coral reef islands have a self-sustaining mechanism that expands and maintains the islands through the deposition of calcium carbonate (CaCO3) by marine organisms. However, the human societies established on such low-lying coral reef islands are vulnerable to rapid sea-level rises. Enhancing the self-sustaining mechanism of coral reefs will become one of the required sustainable countermeasures against sea-level rise. We examined the feasibility of mass culturing the large benthic foraminifera Baculogypsina sphaerulata, which is known as “living sand.” We developed a rearing system with the key components of an artificial lawn as a habitat and a stirring device to create vertical water currents. Batches of B. sphaerulata in two different size groups were reared to examine size growth and reproduction under the culture conditions. All culture batches reproduced asexually following generations over 6 months in culture. The small-sized group exhibited steady growth, whereas the large-sized group underwent a reduction in mean size because large individuals (> 1.5 mm2) died off. Similar traits of size structure between the culture batches and natural populations indicate that our culturing conditions can successfully reproduce environments similar to the habitat of this species. Reproduction, consistent size growth, and size structure similar to the natural population indicate that the examined rearing system is viable for culturing Foraminifera at a large scale.  相似文献   

18.
The population structure, dynamics and distribution of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum, common species in the south coast of Portugal, were studied in a spatial–temporal manner in order to understand the influence of cross-shore sediment transport and anthropogenic activities. Spisula solida is harvested commercially, whereas D. pugilator and B. lanceolatum are non-target species, with little information available on the population dynamics of these species. The study was performed in 2001–2002, and along a gradient of 100–5000 m from the coastline, corresponding to a depth gradient of between 1 and 32 m deep. Spisula solida was distributed preferentially at 3–12 m deep, and its distribution appeared to be influenced seasonally by the cross-shore sediment dynamics. Results suggested benthic recruitment in June. Some recruitments had no expression (year 2001) since adults were not present, which seems to be a direct impact of clams' fisheries. Diogenes pugilator showed preferential distribution at shallow depths, from 1.3 to 8 m. Results suggested recruitments every 4 months, in June, February and October. Branchiostoma lanceolatum showed the widest distribution, from 7 to 26 m deep. Recruitment seemed to start in June until October, when it attained an abundance peak of juveniles. For both non-target species no clear effects of the cross-shore dynamics or the clams' fisheries impact were visible.  相似文献   

19.
During September and October 1996 planktic foraminifers and pteropods were sampled from the upper 2500 m of the water column in the BIOTRANS area (47°N, 20°W), eastern North Atlantic, as part of the JGOFS program. Hydrography, chlorophyll fluorescence, and nutrient content were recorded at high spatial and temporal resolution providing detailed information about the transition time between summer and fall. At the beginning of the cruise a shallow pycnocline was present and oligotrophic conditions prevailed. Over the course of the cruise, the mixed layer depth increased and surface water temperature decreased by 1.5°C. Both chlorophyll-a dispersed in the upper 50 m by vertical mixing and chlorophyll-a concentrations at the sea surface increased. The nitracline shoaled and nutrient enriched waters were entrained into the mixed layer. Planktic foraminifers and pteropods closely reflected the changes in the hydrography by increased growth rates and changes in species composition. Three main groups of planktic foraminiferal species were recognized: (1) a temperate and low-productivity group dominated by Neogloboquadrina incompta characterized the shallow mixed layer depths. (2) A temperate and high-productivity group dominated by Globigerina bulloides characterized the period with wind-induced dispersal of chlorophyll-a and entrainment of nutrient-enriched waters. (3) A warm water group containing Globigerinoides sacculifer, Orbulina universa, Globigerinoides ruber (white), and Globigerinella siphonifera was most common during the first days of sampling. Synchronous with the hydrographic change from summer to fall, planktic foraminiferal and pteropod growth was stimulated by redistribution of chlorophyll-a and entrainment of nutrient-enriched waters into the mixed layer. In addition, the seasonal change in the eastern North Atlantic resulted in a transition of the epipelagic faunal composition and an increased calcareous particle flux, which could be used to trace seasonality in fossil assemblages and allow for better paleoceanographic interpretation of the boreal Atlantic.  相似文献   

20.
The often-rapid deposition of phytoplankton to sediments at the end of the spring phytoplankton bloom is an important component of benthic–pelagic coupling in temperate and high latitude estuaries and other aquatic systems. However, quantifying the flux is difficult, particularly in spatially heterogeneous environments. Surficial sediment chlorophyll-a, which can be measured quickly at many locations, has been used effectively by previous studies as an indicator of phytoplankton deposition to estuarine sediments. In this study, surficial sediment chlorophyll-a was quantified in late spring at 20–50 locations throughout Chesapeake Bay for 8 years (1993–2000). A model was developed to estimate chlorophyll-a deposition to sediments using these measurements, while accounting for chlorophyll-a degradation during the time between deposition and sampling. Carbon flux was derived from these estimates via C:chl-a = 75.Bay-wide, the accumulation of chlorophyll-a on sediments by late spring averaged 171 mg m−2, from which the chlorophyll-a and carbon sinking fluxes, respectively, were estimated to be 353 mg m−2 and 26.5 gC m−2. These deposition estimates were ∼50% of estimates based on a sediment trap study in the mid-Bay. During 1993–2000, the highest average chlorophyll-a flux was in the mid-Bay (248 mg m−2), while the lowest was in the lower Bay (191 mg m−2). Winter–spring average river flow was positively correlated with phytoplankton biomass in the lower Bay water column, while phytoplankton biomass in that same region of the Bay was correlated with increased chlorophyll-a deposition to sediments. Responses in other regions of the Bay were less clear and suggested that the concept that nutrient enrichment in high flow years leads to greater phytoplankton deposition to sediments may be an oversimplification. A comparison of the carbon flux associated with the deposition of the spring bloom with annual benthic carbon budgets indicated that the spring bloom did not contribute a disproportionately large fraction of annual carbon inputs to Chesapeake Bay sediments. Regional patterns in chlorophyll-a deposition did not correspond with the strong regional patterns that have been found for plankton net community metabolism during spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号