首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wave climate simulation for southern region of the South China Sea   总被引:2,自引:0,他引:2  
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.  相似文献   

2.
利用位于海南富克(19.5°N,109.1°E)和广西桂平(23.4°N,110.1°E)两个台站两年多的OH全天空气辉成像仪观测数据,对中国低纬地区的重力波传播统计特征进行了研究.从富克和桂平的气辉成像观测中, 分别提取了65和86个重力波事件.研究结果表明,观测水平波长,观测周期和水平相速度分别集中分布在10~35 km, 4~14 min和20~90 m·s-1范围.重力波传播方向,在夏季表现出很强的东北方向传播.然而,在冬季主要沿东南和西南方向传播. 同时,结合流星雷达风场观测和TIMED/SABER卫星的温度数据,也发现在中层-低热层中传播的大多数重力波表现为耗散传播.且低层-中层大气中背景风场的滤波作用和多普勒频移可能对纬向方向传播的重力波产生的各向异性起到重要的调制作用.然而,经向方向传播的重力波产生的各向异性可能同时被低层大气中波源的非均匀分布以及潮汐变化所影响.  相似文献   

3.
利用位于中国中纬地区6个OH气辉成像仪2012年1月至2013年12月两年的观测数据,我们研究分析了重力波传播特征.结果表明重力波的水平波长、观测周期和水平相速度分别主要分布于10~35km,4~12min和30~100m·s-1范围.夏季,重力波主要沿极向方向传播.然而,冬季,他们有向赤道方向和平行于赤道方向的传播趋势.同时,我们结合TRMM卫星和ECMWF数据,发现在夏季重力波的北向传播趋势可能主要由观测台站南方的对流活动导致.然而,对流层顶附近的急流可能在冬季重力波的主要传播方向方面做出较大贡献.分析结果也表明,低层-中层大气背景风的滤波效应仅在夏季与中国中纬地区重力波纬向传播方向各向异性吻合较好.  相似文献   

4.
AIRS观测的东亚夏季平流层重力波特征   总被引:7,自引:4,他引:3       下载免费PDF全文
对流性重力波对中层大气环境有显著影响.重力波活动及重力波源的地理和季节性变化等信息是理解和模拟重力波效应的基础.卫星高光谱红外大气垂直探测器AIRS的4μm和15μm波段可用于识别30~40km高度范围和41km高度附近的重力波,其11μm通道可同步观测对流层深对流.观测个例表明,海面和陆面上空的平流层扰动影响范围均可达1000km,不同高度的扰动强度分布也存在差异.基于2007年6月至8月的AIRS观测资料,分析了东亚区域的对流层深对流活动和平流层的重力波,得到了深对流和重力波发生频率的水平分布.统计结果表明,东亚区域夏季夜间的深对流活动明显少于白天,但AIRS观测到的平流层重力波发生频率和扰动强度均显著大于白天,揭示了夜间对流层深对流诱发的平流层重力波在强度、范围等方面可能与白天存在显著差异.进一步对比分析表明,AIRS观测的平流层扰动高值区与深对流高值区明显不同.平流层重力波与对流层深对流之间的相关分析表明,在36°N以南的区域,41km高度上AIRS观测的重力波中,深对流云诱发的重力波的比例约为30%~100%.在10°N至36°N区间,90%的深对流均可诱发平流层重力波.分析得到的30~40km高度区间和41km高度附近的重力波水平分布对比表明,后一高度上的扰动强度明显大于前一高度,且前一高度在东南亚区域存在强扰动中心而在后一高度则没有.最后,给出了AIRS观测的几种典型形态的东亚区域平流层波动,表明了该区域平流层环境波动形态的复杂性和多样性.  相似文献   

5.
The parameters of internal gravity waves detected based on the variations in the hydroxyl molecule emission are statistically analyzed. The wave structures were registered with an all-sky infrared camera at Maimaga optical station (? = 63° N, λ = 129.5° E). The data obtained in the winter period of 1998–2002 are analyzed. In total, 162 waves, the majority of which propagated westward, were recorded. The wavelengths vary from 15.4 to 100 km (the average value is ~31 km); the observed horizontal phase velocities change from 19 to 166 m/s (the average value is ~60 m/s), and the estimated periods are 9–90 min (the average value is ~11 min). The statistical characteristics of the waves do not differ from those of similar waves at middle and low latitudes. The azimuthal dependence of the wave propagation direction is consistent with the theory of wave filtration by a background wind in the middle atmosphere. Probable sources of the waves are mountain ranges located at a distance of 200 km east of the observation site. Somewhat greater values of the mean wavelength and wave propagation velocities than those recorded at lower latitudes may be due to the lower loss of energy and velocity of the waves during their propagation from the source to the mesosphere, although other causes are not ruled out. Ripple-type waves have the same direction of propagation as band-type waves.  相似文献   

6.
Observations of wave-driven fluctuations in emissions from the OH Meinel (OHM) and O2 Atmospheric band were made with a narrow-band airglow imager located at Adelaide, Australia (35S, 138E) during the period April 1995 to January 1996. Simultaneous wind measurements in the 80–100 km region were made with a co-located MF radar. The directionality of quasi-monochromatic (QM) waves in the mesopause region is found to be highly anisotropic, especially during the solstices. During the summer, small-scale QM waves in the airglow are predominately poleward propagating, while during winter they are predominately equatorward. The directionality inferred from a Stokes analysis applied to the radar data also indicates a strong N–S anisotropy in summer and winter, but whether propagation is from the north or south cannot be determined from the analysis. The directionality of the total wave field (which contains incoherent as well as coherent features) derived from a spectral analysis of the images shows a strong E–W component, whereas, an E–W component is essentially absent for QM waves. The prevalence of QM waves is also strongly seasonally dependent. The prevalence is greatest in the summer and the least in winter and correlates with the height of the mesopause; whether it is above or below the airglow layers. The height of the mesopause is significant because for nominal thermal structures it is associated with a steep gradient in the Brunt-Väisälä frequency that causes the base of a lower thermospheric thermal duct to be located in the vicinity of the mesopause. We interpret the QM waves as waves trapped in the lower thermosphere thermal duct or between the ground and the layer of evanescence above the duct. Zonal winds can deplete the thermal duct by limiting access to the duct or by negating the thermal trapping. Radar measurements of the prevailing zonal wind are consistent with depletion of zonally propagating waves. During winter, meridional winds in the upper mesophere and lower thermosphere are weak and have no significant effect on meridionally propagating waves. However, during summer the winds in the duct region can significantly enhance ducting of southward propagating waves. The observed directionality of the waves can be explained in terms of the prevailing wind at mesopause altitudes and the seasonal variation of distant sources.  相似文献   

7.
Atmospheric gravity waves, with small to medium scales, prevail in the atmosphere and have global ef- fects. Many researches show that gravity waves are the main source that causes the variation of wind and temperature field in the stratosphere, and that the break-up of upward propagating gravity waves is the dominant sources of small scale turbulent and mixing processes in the middle atmosphere. Theories and ob- servations indicate that the redistribution of momen- tum, caused by the generati…  相似文献   

8.
The 5 years’ radiosonde data obtained from January 2000 to December 2004 in Wuhan (30.5°N, 114.4°E) have been used for studying the behaviors of inertia-gravity waves in the vicinity of the jet stream. It is observed that the wave intensity has a similar seasonal variation with the jet stream intensity with a strong winter maximum and a summer minimum. Moreover, a similar inter-annual trend for both the wave intensity and jet stream intensity is also found. These results suggest that the jet stream may be the predominant source of the inertia-gravity waves in the troposphere and lower stratosphere over Wuhan in the period of the 5 years. It is noticed from 28 radiosonde profiles during wintertime that the energy of inertia-gravity waves exhibits upward and downward propagation respectively above and below the jet stream. This indicates that the source of the inertia-gravity waves is within the jet stream. In these cases, the twin waves below and above the jet stream usually hold similar amplitudes. The horizontal propagation of the twin waves also shows some interesting relationship.  相似文献   

9.
Characterization of gravity wave(GW)parameters for the stratosphere is critical for global atmospheric circulation models.These parameters are mainly determined from measurements.Here,we investigate variation in inertial GW activity with season and latitude in the lower stratosphere(18-25 km)over China,using radiosonde data with a high vertical resolution over a 2-year period.Eight radiosonde stations were selected across China,with a latitudinal range of 22°-49°N.Analyses show that the GW energy in the lower stratosphere over China has obvious seasonal variation and a meridional distribution,similar to other regions of the globe.The GW energy is highest in winter,and lowest in summer;it decreases with increasing latitude.Velocity perturbations with longitude and latitude are almost the same,indicating that GW energy is horizontally isotropic.Typically,85%of the vertical wavelength distribution is concentrated between elevations of 1 and 3 km,with a mean value of 2 km;it is almost constant with latitude.Over 80%of all the horizontal wavelengths occur in the range 100-800 km,with a mean value of 450km;they show a weak decrease with increasing latitude,yielding a difference of about 40 km over the 22°-49°N range.The ratio of horizontal wavelength over vertical wavelength is about 200:1,which implies that inertial GWs in the lower stratosphere propagate along nearly horizontal planes.Ratios of their intrinsic frequency to the Coriolis parameter decrease with increasing latitude;most values are between 1 and 2,with a mean value of 1.5.Study of the propagation directions of GW energy shows that upward fractions account for over 60%at all stations.In contrast,the horizontal propagation direction is significantly anisotropic,and is mainly along prevailing wind directions;this anisotropy weakens with increasing latitude.  相似文献   

10.
The knowledge of offshore and coastal wave climate evolution towards the end of the twenty-first century is particularly important for human activities in a region such as the Bay of Biscay and the French Atlantic coast. Using dynamical downscaling, a high spatial resolution dataset of wave conditions in the Bay of Biscay is built for three future greenhouse gases emission scenarios. Projected wave heights, periods and directions are analysed at regional scale and more thoroughly at two buoys positions, offshore and along the coast. A general decrease of wave heights is identified (up to ?20?cm during summer within the Bay off Biscay), as well as a clockwise shift of summer waves and winter swell coming from direction. The relation between those changes and wind changes is investigated and highlights a complex association of processes at several spatial scales. For instance, the intensification and the northeastward shift of strong wind core in the North Atlantic Ocean explain the clockwise shift of winter swell directions. During summer, the decrease of the westerly winds in the Bay of Biscay explains the clockwise shift and the wave height decrease of wind sea and intermediate waves. Finally, the analysis reveals that the offshore changes in the wave height and the wave period as well as the clockwise shift in the wave direction continue toward the coast. This wave height decrease result is consistent with other regional projections and would impact the coastal dynamics by reducing the longshore sediment flux.  相似文献   

11.
本文利用2006年5月至2013年4月COSMIC干温廓线数据,提取了青藏高原地区大气重力波势能,以此研究了青藏高原大气重力波势能的分布频率模型和大气重力波活动的时空变化特征,并进一步分析了高原大气重力波活动与高原地形、风速和高原大陆热辐射之间的相关性.青藏高原地区大气重力波势能的分布频率服从对数生长分布;青藏高原地区大气重力波在16~18km和28~31km高度较活跃,而在20~26km高度较平静;高原大陆边缘各季节重力波活动均较活跃,而高原大陆上空大气重力波活动呈明显季节性变化,其在冬春季节较活跃,在夏秋季节较平静;2010年冬季青藏高原大气重力波活动异常平静;各季节整个高原上空大气重力波活跃度有随大气高度升高而降低的趋势,高原上低层大气重力波向高层传播会发生耗散作用.地形与风速是影响青藏高原大气重力波活动的重要因素.地形主要影响平流层底部的重力波活动;纬向风比经向风对该地区平流层大气重力波活动的影响大,纬向风总体上会促进高原大气重力波活动.青藏高原大陆热辐射对高原大气的加热作用是导致青藏高原大气重力波活动呈季节性变化的重要因素.  相似文献   

12.
The development of ocean waves under explosive cyclones (ECs) is investigated in the Northwestern Pacific Ocean using a hindcast wave simulation around Japan during the period 1994 through 2014. A composite analysis of the ocean wave fields under ECs is used to investigate how the spatial patterns of the spectral wave parameters develop over time. Using dual criteria of a drop in sea level pressure below 980 hPa at the center of a cyclone and a decrease of at least 12 hPa over a 12-h period, ECs are identified in atmospheric reanalysis data. Two areas under an EC were identified with narrow directional spectra: the cold side of a warm front and the right-hand side of an EC (relative to the propagating direction). Because ECs are associated with atmospheric fronts, ocean waves develop very differently under ECs than they do under tropical cyclones. Moreover, ECs evolve very rapidly such that the development of the ocean wave field lags behind the peak wind speed by hours. In a case study of an EC that occurred in January 2013, the wave spectrum indicates that a warm front played a critical role in generating distinct ocean wave systems in the warm and cold zones along the warm front. Both the warm and cold zones have narrow directional and frequency spectra. In contrast, the ocean wave field in the third quadrant (rear left area relative to the propagation direction) of the EC is composed of swell and wind sea systems propagating in different directions.  相似文献   

13.
北极地区低平流层惯性重力波的观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
南极地区重力波活动有大量报道,相对而言,北极地区重力波的研究还很少.本文利用极区Ny-Alesund站点(78.9°N,11.9°E)无线电探空仪从2012年4月1日到2017年3月31日共5年的观测数据,统计分析了北极地区低平流层惯性重力波的特征.观测显示,月平均纬向风在20 km以下盛行东向风,再随着高度增加,逐渐呈现出半年振荡现象.对流层顶高度在5~13 km范围内变化,其月平均高度显示出年循环,最高出现在夏季,约为10 km,最低出现在冬季,约为8.5 km.对流层和低平流层月平均温度都显示出明显的年周期变化,这与中低纬度观测结果有所不同.结合Lomb-Scargle谱分析和矢端曲线方法,估算了准单色惯性重力波参数.个例研究表明,低平流层惯性重力波呈现出远离源区的自由传播性质.统计结果显示,惯性重力波的水平和垂直波长分别集中在50~450 km和1~4 km范围内,本征频率集中在1~2.5倍惯性频率间,这些值都比中低纬度观测值稍小.垂直方向本征相速度主要集中在-0.3~0 m·s-1,而纬向和经向本征相速度集中在-40~40 m·s-1之间.在5年的观测中,大约91.5%的惯性重力波向上传播.在冬季和早春,由于极地平流层极涡活动,激发出向下传播的惯性重力波,因此,向下传播的比例上升到相应月份的20%左右.由于低层大气盛行的东向风的滤波效应,低平流层大部分惯性重力波向西传播.波能量呈现出明显的年周期变化,最大值在冬季、最小值在夏季,与北半球中低纬度观测结果一致,表明北半球重力波活动普遍冬季强、夏季弱.  相似文献   

14.
This study investigates the recovery capabilities of a single-barred beach in the Pacific Mexican coast before and after the 2015–2016 El Niño winter. Concurrent hydrodynamic and morphological data collected over a 3-year period (August 2014–2017) were analysed to determine the subaerial-subtidal volumetric exchange and cross-shore subtidal sandbar migrations, in relation to the incident wave forcing. The beach presented a seasonal seaward and landward sandbar migration cycle. The sandbar migrated offshore during the energetic waves between November and February, and onshore during the milder wave period in spring, until welding to the subaerial beach around May. The transfer of sediment towards the subaerial section continued over the summer, reaching a complete recovery by September/October. Prior to El Niño, the subaerial beach successfully recovered by the end of summer 2015 through the landward sandbar migration process. The 2015–2016 energetic winter waves caused a subaerial volume loss of ~ 140 m3 m?1 (from October 2015 to March 2016), more than twice the amount eroded in the other winters, and the sandbar moved further offshore and to deeper depths (3–4 m) than the winter before. In addition, the energetic 2015–2016 winter waves lasted for 2 months longer than in other years, making the 2016 spring shorter. Consequently, during the onshore migration, the sandbar was unable of reaching shallow depths, and a large portion of sand remained in the subtidal beach. The subaerial beach recovered 60 and 65% of the loss in the 2016 and 2017 summers, respectively. It is concluded that the landward migration process of the sandbar during the spring is critical to ensure a full subaerial beach recovery over the mild wave period in summer. The recovery capabilities of the subaerial beach will depend on the cross-shore distance and depth where the sandbar is located, and on the duration of mild wave conditions required for the sandbar to migrate onshore.  相似文献   

15.
Summary Calculations are carried out of upward propagation of a tropospherically forced 10-day planetary wave into the upper middle atmosphere with the use of the COMMA-R model of the University of Cologne, of its transformation into a wave in electron density by means of the model of the Comenius University, and of its final transformation into a wave in radio wave absorption in the lower ionosphere applying the computer code of the Geophysical Institute. The calculations show that the absorption may be used for investigating the planetary wave activity, particularly of its long-term trends. The possibility of propagation of planetary waves from the winter hemisphere to the summer hemisphere is illustrated, which could contribute to explanation of the occurrence of travelling planetary waves in the mesosphere in summer.Dedicated to the Memory of Professor Karel P  相似文献   

16.
Specially designed arrays of strong motion seismographs located near earthquake sources are required for engineering studies of near-source earthquake properties as well as spatial variation of seismic waves. The SMART-1 array in Tath provides good records for this type of study. Based on the SMART-1 array data, the analysis of the principal direction wave propagation and the space-time correlation of some events recorded by SMART-1 have been studied. A stoce model for predicting the differential ground movement was also developed. This stochastic model includes the effect of source characteristics, attenuation of wave passage and spatial correlation characteristics. The performance of this more discussed and compared with the ground movement recorded by the SMART-1 array. From the present study, it is that spatial correlations do exist as seismic waves propagate across the array site. Generally, the loss of coherence is direction of propagation can be explained by energy at the same frequency exhibiting a slightly different velocity with the measurement intervals. It is also concluded that the phase velocity of seismic waves and the corner frequency of the grep displacement spectrum are controlling factors in the prediction of the root mean square of differential grep displacement.  相似文献   

17.
Ray-tracing techniques are used to computationally investigate the propagation of gravity waves through the middle atmosphere, as characterized by the vertically varying CIRA-86 wind and temperature models, plus a tidal wind model that varies temporally as well as vertically. For the wave parameters studied here, the background wind variation has a much stronger influence on the ray path and changes in wave characteristics than does the temperature variation. The temporal variation of the tidal component of the wind changes the observed frequency, sometimes substantially, while leaving the intrinsic frequency unaltered. It also renders temporary any critical levels that occur in the tidal region. Different starting times for the rays relative to the tidal phase provide different propagation environments, so that the temporary critical levels appear at different heights. The lateral component of the tidal wind is shown to advect propagating wave packets; the maximum lateral displacement of a packet varies inversely with its vertical group velocity. Time-dependent effects are more pronounced in local winter than in summer.  相似文献   

18.
— The work deals with the computation and analysis of spectral energetics in the frequency domain at 850?hPa and 200?hPa over the tropics (20°S–20°N) and extratropics (20°N–60°N). The data for the winter months, i.e., November, December and January of 1995, 1996 and 1997 are selected for this purpose. The results suggest that much of the low frequency variability of the Northern Hemisphere wintertime general circulation is associated with disturbances which derive their energy from the time-mean flow through barotropic instability. Low frequency fluctuations tend to be larger in horizontal scale and their kinetic energy is largely confined to the upper troposphere. At 850?hPa, strong energy interaction south of 5°N is noticed due to a southward shift of major inflow channel, originating from the Bay of Bengal and entering the ITCZ from the western Arabian Sea. The energy balances in the tropics and the extratropics during winter have different characteristics from those during summer. In contrast to the summer circulation, instead of a downscale decascade as in the case of the extratropics, kinetic energy is transferred in an opposite sense, namely from transients of shorter to those of longer time scales in the tropics during winter. The strong nonlinear energy interactions associated with low frequency waves over the Indian Ocean (5°N–5°S) during winter is the manifestation of the deep convection due to warm water coupled with the crossequatorial low level flow along the ITCZ over this region. Forcing from this region readily excites a large response in terms of nonlinear energy interaction over the extratropical northeast Pacific.  相似文献   

19.
临近空间大气扰动变化特性的定量研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文利用TIMED/SABER 2002年1月至2013年1月共11年的卫星温度探测数据,通过全球网格化及在网格内作数学统计的方法,得到了20~100km高度上全球网格点上温度的平均值和标准差,实现了对临近空间全球大气扰动进行定量刻画的目的.通过定量分析温度标准差的分布特性,文中得到了临近空间大气扰动的全球分布规律,并讨论了与这些分布规律相关的物理过程.结果表明,在20~70km高度上,温度标准差为1~10K,有显著的冬季/夏季的差异,冬季的温度标准差比夏季大;大气重力波扰动是最主要来源,同时大气传播性行星波引起的扰动也是来源之一.在70~100km高度上,温度标准差常年较强,量值为10~30K,冬季/夏季的差异小,低纬地区的温度标准差高于中高纬度地区,呈现许多局地化的小结构.大气重力波是引起该区域大气总扰动量的主要扰动来源,大气潮汐波、传播性行星波(准2天、准6.5天)也有重要贡献.  相似文献   

20.
钟玮  陆汉城  张大林 《地球物理学报》2010,53(11):2551-2563
利用非对称波分量分解和小波分析的方法,对准平衡动力模型下非对称强飓风内中尺度波动的空间结构和时间序列特征进行分析.结果表明,平衡流场中1波扰动占主要地位且具有涡旋Rossby波的典型结构特征,准平衡流各波数下扰动的空间分布反映了中尺度波动的混合性质;模式大气和准平衡垂直运动的全局功率谱中,超过信度检验的强波动信号中不仅包含分别表征重力波和涡旋Rossby波的高频和低频波动信号,还存在表征具有物理性质不可分特性的混合涡旋Rossby-重力波的中频波动.混合波的出现建立了不同频段波动之间的能量交换通道,其信号的变化对飓风系统的强弱变化具有一定的指示作用.非平衡垂直运动的波动强信号则主要集中在高频和低频区域,反映了在飓风强度变化情况下,与高频重力波有关的快波调整过程所引起的垂直扰动的振荡和传播.强垂直风切变对飓风内中尺度波动的切向和径向传播具有重要影响,当环境垂直风切变很强时,准平衡1波扰动在径向和切向方向上均呈"驻波"形态,随着环境垂直风切变的减弱,1波扰动以混合波波速逆基本气流传播.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号