首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

赤道等离子体泡是在磁赤道和低纬地区一种通常发生在夜间的大尺度电离层不规则结构.本文利用2010—2021年全球低纬地区GNSS TEC监测仪长期观测数据,分析了赤道等离子体泡对太阳和地磁活动及季节的依赖特征.结果表明,全球每个经度区赤道等离子体泡发生率与太阳活动都显著正相关,赤道等离子体泡的日发生率与F107指数相关系数接近0.70.经度-60°~-30°在赤道等离子体泡高发月份的日落后发生率与F107的相关关系有明显的饱和效应.在季节变化方面,经度-60°~-30°赤道等离子体泡主要发生在1—3月和10—12月,其他经度主要发生在分季.不同经度区赤道等离子体泡日落后发生率季节不对称性存在显著区别,在太阳活动上升期,经度-60°~-30°的10—12月发生率明显高于1—3月;在太阳活动下降期,0°~180°经度区3月分季高于9月分季.此外,地磁扰动对产生赤道等离子体泡主要是抑制作用,特别是在太阳活动高年、分季.

  相似文献   

3.
Advection of continental aerosols over to the Arabian Sea and Indian Ocean regions during winter (when the prevailing synoptic wind is north-easterly) has been studied by examining the spatial distribution of the near-surface aerosol mass concentration (MC). In the northern part of Arabian Sea and north of the inter-tropical convergence zone (ITCZ) MC is significantly larger than that in the southern side of ITCZ. A prominent high in MC is observed near the mid-Arabian Sea region ∼12° to 15°N. Associated with local convergences introduced by mesoscale weather systems, pockets of high MC are observed at different locations over the oceanic regions. Significantly low values of MC are observed in the ITCZ. Surface streamlines and wind patterns indicate advection of continental aerosols from the adjoining landmass over to the oceanic environment. Aerosol mass concentration in the far oceanic region is also influenced by in situ production of sea-spray aerosols, which depends on wind speed. The nature of advection of continental aerosols has been studied by separating the wind-induced component of MC and chemical nature of the aerosols. The spatial variation of the wind-independent component matches well with that of the non-sea-salt aerosols estimated from chemical composition.  相似文献   

4.
In this work, we use a semi-empirical model of the micrometeor input function (MIF) together with meteor head-echo observations obtained with two high power and large aperture (HPLA) radars, the 430 MHz Arecibo Observatory (AO) radar in Puerto Rico (18°N, 67°W) and the 450 MHz Poker flat incoherent scatter radar (PFISR) in Alaska (65°N, 147°W), to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model, recently developed by Janches et al. [2006a. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. Journal of Geophysical Research 111] and Fentzke and Janches [2008. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function observed at arecibo. Journal of Geophysical Research (Space Physics) 113 (A03304)], includes an initial mass flux that is provided by the six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us to explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular location and season.  相似文献   

5.
利用美国航空航天局MERRA(Modern-Era Retrospective Analysis for Research and Applications)再分析资料和MODIS(Moderate-Resolution Imaging Spectroradiometer)卫星资料以及欧洲气象中心ECMWF-Interim(European Centre for Medium-Range Weather Forecasts)再分析资料,分析了发生于青藏高原北侧上空的一次地形重力波事件,并使用中尺度预报模式WRF-ARW.V3.0(Weather Research and Forecasting model,V3.0)对其进行了数值模拟.在此基础上,诊断分析了此次地形重力波在UTLS(Upper Troposphere and Lower Stratosphere)区域造成的物质和能量垂直传输特征.分析结果表明这一中尺度地形重力波信号的水平波长约为600km,与地形扰动水平尺度接近,重力波在对流层中传播的垂直波长约为3km,在垂直方向上随着高度的增加呈现出由东向西倾斜的结构特征.此次地形重力波上传进入平流层并在150hPa附近破碎,波破碎后动量通量在短时间内发生了强烈的衰减,重力波携带的能量在破碎高度附近释放.重力波破碎的同时垂直方向湍流混合变得异常强烈,湍流交换系数可在短时间内增加到背景值的8倍以上,剧烈湍流混合过程导致了对流层上层的空气进入平流层,使下平流层空气出现了位势涡度和臭氧的低值区,在浮力频率的垂直剖面中也可以看到由于地形重力波过程造成的平流层下层浮力频率异常低值区.  相似文献   

6.
7.
A large aerosol plume with optical depth exceeding 0.7 engulfs most parts of the Arabian Sea during the Asian summer monsoon season. Based on Micro Pulse Lidar observations during the June–September period of 2008 and 2009, the present study depicts, for the first time, the existence of an elevated dust layer occurring very frequently in the altitude band of 1–3.5 km over the west coast of peninsular India with relatively large values of linear depolarization ratio (δL). Large values of δL indicate the dominance of significantly non-spherical aerosols. The aerosol optical depth of this layer (0.2) is comparable to that of the entire atmospheric column during dust-free days. Back-trajectory analysis clearly shows the advection of airmass from the arid regions of Arabia and the west Arabian Sea, through the altitude region centered around 3 km. This is in contrast to the airmass below 1 km originating from the pristine Indian Ocean region which contains relatively spherical aerosols of marine origin with δL generally <0.05.  相似文献   

8.
The variation of plasmaspheric electron content (PEC) is an important parameter for studying the effects of space weather events in the low latitude ionosphere. In the present study, the vertical TEC (VTEC) measurements obtained from co-located dual-frequency Global Positioning System (GPS) and Coherent Radio Beacon Experiment (CRABEX) systems have been used. The daytime PEC variations under different geophysical conditions have been estimated (around the magnetic equator) over the Indian sector, for the first time. The first observations of the nighttime PEC variations over the Indian sector are also estimated from the simultaneous measurements of Faraday rotation, differential Doppler and modulation phase delay made using the CRABEX system on-board the Indian geostationary satellite GSAT2. The study shows that the PEC varies over a range of 10–22% (of the total electron content (TEC)) during daytime of magnetically quiet period. There is an increase in PEC with latitude during magnetically quiet period. During a magnetically disturbed period of 9 November 2004, the PEC increased to ∼30% of the TEC over the magnetic equatorial location of Trivandrum (8.5°N, 76.9°E, dip 0.5°N), while at Bangalore (13°N, 78°E, dip 10°N) it showed a large depletion. The implications of the new observations are discussed.  相似文献   

9.
Ionospheric effects of a large number (51) of severe geomagnetic storms are studied using total electron content (TEC) and VHF/UHF scintillation data from Calcutta, situated near the northern crest of equatorial ionization anomaly and equatorial spread-F (ESF) data from Kodaikanal. The susceptibility of the equatorial ionosphere to develop storm time plasma density irregularities responsible for ESF and scintillation is found to be largely modulated by the local times of occurrences of main and recovery phases as seen in the Dst index. While inhibition of premidnight scintillation for lower TEC values compared to the quiet day averages is omnipresent, occurrence of scintillation for enhancements of TEC is largely dependent on initiation time and amplitude of the said deviations. An overall reduction in threshold values of h′F for observing storm induced ESF and scintillation compared to reported quiet time values is noted. The results are discussed in terms of storm time variabilities in electric fields, neutral wind system and composition changes.  相似文献   

10.
中国大陆经纬链地电场日变化   总被引:15,自引:1,他引:14       下载免费PDF全文
本文应用中国大陆两条经度链和两条纬度链上共37个地电场台站的观测数据,研究了地电场日变化的时/频域特征,结果认为,绝大多数台站的日变化表现为两次起伏的半日波,紧临午前午后出现;按FFT振幅谱由大到小,其主要周期成分依次为12.4/12、8、24 h等,与潮汐调和分量周期一致;纬度效应主要表现为沿经度链的日变化幅度与纬度高/低有关,日变化相位差与当地时差吻合;Loyd季节的J季节日变化幅度最大、E季节其次、D季节最小.讨论了产生日变化主要周期成分的可能原因,认为月日引潮力引起的地面涡旋电流强度变化和太阳风引起的空间电磁活动共同产生了地电日变化的半日波周期成分.  相似文献   

11.
Aerosol optical thickness (AOT) and seasonal variation of AOT over Belsk, Poland, in the UV wavelength range (310–380 nm) have been analysed using results of measurements by Brewer spectrophotometer No. 064 and Cimel sunphotometer data for the 2002–2007 period. The comparison of AOT derived from direct Sun measurements by Brewer spectrophotometer in the 310–320 nm range and retrieved from Cimel measurements at longer wavelengths shows good correlation (R = 0.96), with overestimation of retrieved values compared to the measured ones by about 6%. Basing on aerosol microphysical properties taken from almucantar retrievals and Mie theory, optical properties of aerosol in the UV range has been calculated. Analysis of seasonal variation of AOT at Belsk reveals two maxima: in April and July–August. Analysis of back-trajectories in conjunction with analysis of fire maps from Fire Information For Resource Management System shows that these seasonal maxima are connected with seasonal biomass burning in Eastern and Southern Europe.  相似文献   

12.
The Ediacaran period is characterized by the extremely negative carbon isotope anomalies and great biotic evolution in Earth history. At least four negative carbon isotope anomalies have been reported from this interval in South China so far. It is traditionally argued that the isotope variations can be used as a useful tool for global correlation of Ediacaran succession; however, more and more researches argued against this idea. We reviewed the previously published carbon isotope data in South China, and ...  相似文献   

13.
The solar wind properties depend on , the heliomagnetic latitude with respect to the heliospheric current sheet (HCS), more than on the heliographic latitude. We analyse the wind properties observed by Wind at 1 AU during about 2.5 solar rotations in 1995, a period close to the last minimum of solar activity. To determine , we use a model of the HCS which we fit to the magnetic sector boundary crossings observed by Wind. We find that the solar wind properties mainly depend on the modulus ||. But they also depend on a local parameter, the total pressure (magnetic pressure plus electron and proton thermal pressure). Furthermore, whatever the total pressure, we observe that the plasma properties also depend on the time: the latitudinal gradients of the wind speed and of the proton temperature are not the same before and after the closest HCS crossing. This is a consequence of the dynamical stream interactions. In the low pressure wind, at low ||, we find a clear maximum of the density, a clear minimum of the wind speed and of the proton temperature, a weak minimum of the average magnetic field strength, a weak maximum of the average thermal pressure, and a weak maximum of the average factor. This overdense sheet is embedded in a density halo. The latitudinal thickness is about 5° for the overdense sheet, and 20° for the density halo. The HCS is thus wrapped in an overdense sheet surrounded by a halo, even in the non-compressed solar wind. In the high-pressure wind, the plasma properties are less well ordered as functions of the latitude than in the low-pressure wind; the minimum of the average speed is seen before the HCS crossing. The latitudinal thickness of the high-pressure region is about 20°. Our observations are qualitatively consistent with the numerical model of Pizzo for the deformation of the heliospheric current sheet and plasma sheet.  相似文献   

14.
This paper presents the observations of the thermodynamic structure of the Marine Atmospheric Boundary Layer (MABL) over Bay of Bengal (BoB), Northern Indian Ocean (NIO) and Arabian Sea (AS) regions, using radiosonde observations carried out as a part of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) during March–May 2006. Most of the profiles show the general structure of tropical MABL which consists of surface layer, sub-cloud layer (mixed layer), transition layer, cloud layer and trade wind inversion (TWI). However, in few soundings over BoB and AS, it was observed that the cloud layer is remarkably well-mixed, forming a double mixed layer (DML) structure. This feature is seen to be closely associated with the low level anticyclonic system over these sectors. The average profiles of vertical wind (corresponding to the region of observation) obtained from NCEP showed that there is an increase in the vertical velocity on the days when such a double mixed layer was observed and the altitude region of this high ω coincides with that of the DML. The study also reveals some important differences in the MABL structure during convectively active and weak periods. The spatial variation of the parameters like mixed layer (ML) depth, height of lifting condensation level (LCL), level of free convection (LFC), and trade wind inversion (TWI) are presented and discussed in detail. The TWI observations are first of their kind from the BoB region. The TWI top is found to be at a higher height compared to the observations over other oceanic regions, and the relationship between the TWI altitude and lapse rate of specific humidity is used to explain why the TWI was formed at a higher height. The observations of the MABL parameters are also compared with those reported from the previous campaigns over these regions.  相似文献   

15.
The Yellow River transports a large amount of sediment and particulate organic carbon (POC), which is thought to mainly derive from erosion of the Chinese Loess Plateau (CLP). However, the compositions, sources and erosional fluxes of POC in the Yellow River remain poorly constrained. Here we combined measurements of mineralogy, total organic carbon content (OCtotal), stable organic carbon isotopes (δ13Corg), radiocarbon (14C) activity of organic matter in bulk suspended sediments collected seasonally from the upper and middle Yellow River, to quantify the compositions and fluxes of the POC and to assess its sources (biospheric and petrogenic POC, i.e. POCbio and POCpetro, respectively). The results showed that the POC loading of sediments was controlled by mineralogy, grain size and specific surface area of loess particles. The Fmod of POC (0.71 to 0.31) can be explained by mixing of POCpetro with modern and aged POCbio. A binary mixing model based on the hyperbolic relationship of the Fmod and OCtotal revealed a wide range of ages of POCbio from 1300 to 11100 14C years. Relative to the upstream station, the annual POCbio and POCpetro fluxes in the Yellow River are more than doubled after it flows crossing the CLP within 35% drainage area gain, resulting in POCbio and POCpetro yields of the CLP at 3.50 ± 0.59 and 0.48 ± 0.49 tC/km2/yr, respectively. POC flux seasonal variation revealed that monsoon rainfall exerts a first-order control on the export of both POCbio and POCpetro from the CLP to the Yellow River, resulting in more than 90% of the annual POC exported during the monsoon season. Around one third of annual POC erosional flux was transported during a storm event period, highlighting the important role of extreme events in POC export in this large river. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
The characteristics of spatial and temporal distribution of tropospheric NO2 column density concentration over China are presented, on the basis of measurements from the satellite instruments GOME and SCIAMACHY. From these observations, monthly averaged tropospheric NO2 variations are determined for the period of 1997 to 2006. The trend and seasonal cycle are also investigated. The possible source of tropospheric NO2 over megacity area is discussed in this paper. The results show a large growth of tropospheric NO2 over eastern China, especially above the industrial areas with a fast economical growth, such as, Yangtze Rive Delta region and Pearl River Delta region because of the prominent anthropogenic activity. There is a rapid increase of tropospheric NO2 over megacities in China. For instance, Shanghai had a linear significant increase in NO2 columns of ~20% per year (reference year 1997) in the period of 1997-2006, which is the rapidest increase among all the selected cities. The seasonal pattern of the NO2 concentration shows a difference between the east and west in China. In the eastern part of China, an expected winter maximum in seasonal cycle is found because of the prominent anthropogenic activity and meteorological conditions. In the western part this cycle shows a NO2 maximum in summer time, which is attributed to natural emissions, especially soil emissions and lightning. A quickly increasing vehicle population may contribute to the increase of tropospheric NO2 over megacities in China for the remarkable correlation for vehicle population with tropospheric NO2.  相似文献   

17.
The catchment of the river Adour (SW France) has been examined in order to analyse spatio-temporal variations in a number of key variables (flow, suspended matter, nitrate and dissolved orthophosphate concentrations) over a 25-year period (1972–1996).

Within the catchment area, it has been possible to discern how hydroclimatic fluctuations have affected the watershed, with dry periods in 1972–1976 and 1983–1993 alternating with wetter phases in 1977–1982 and 1994–1995. The anthropogenic activity, primarily, involving the use of water for agricultural purposes, has also had a major impact during this period, particularly in the downstream areas of the catchment.

Suspended matter fluxes display regular downstream increases with significant erosion being evident in the mountainous region contrasting with retention in the floodplains area downstream. These fluxes exhibit temporal and spatial variations with peaks occurring every 3–5 years, 1975–1977, 1979, 1982, 1985, 1987 and 1992. Some of these peaks are suggested to be related to anthropogenic activity involving river management, including the cutting of meanders and the construction of dykes for flood prevention.

Nitrate concentrations evince a similar pattern to the suspended matter fluxes with enhanced levels of downstream. The confluence of the Adour with the Midouze appears not to have any major impact on the nitrate concentration. In the downstream areas, an uptake of nitrate is registered indicating the activity of the riparian vegetation. For the entire catchment, maximal nitrate concentrations are observed in 1979, 1982, 1987, 1991–1992 and 1995.  相似文献   


18.
This study analyzed the influence of large-scale climate pattern on precipitation in the Colorado River Basin. Large-scale climatic oscillations, like ENSO, PDO, NAO, and the global warming trend are associated with regional hydrologic variation. Ten types of climate indices were gathered and analyzed to investigate their influence on seasonal precipitation variation in the basin based on a linear correlation analysis and an influence index analysis. The influence index was developed in this study to measure the effect of climate variation on the seasonal precipitation in the basin. The statistical evidence achieved in this study confirms that the Colorado River Basin is subjected to the phase of climate variation. The strength of the seasonal response of precipitation to the climate variation varies in different localities in the basin. The methods of analysis used in this study were proposed in the hope that progress in understanding and modeling dynamic climatic systems can result in developing a valuable long-term forecasting model for water resources management.  相似文献   

19.
Diurnal and seasonal variations of bottom side electron density profile shape parameters B0, B1, representing the bottom side F2-layer thickness and shape, are examined using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N) for high solar activity (HSA) (2001–2002). Median values of these parameters are obtained at each hour during different seasons and compared with the predictions of the latest version of the international reference ionosphere (IRI), IRI-2001 model using both the options namely: IRI (Gulyaeva) and IRI (B0 Tab.). Results show in general, a large variability in B0, and B1 parameters during all the seasons, the variability is larger during nighttime than by daytime. The diurnal variation of median B0, in general, show more or less similar trends with diurnal maximum occurring around noontime, except during summer, when it occurs between 09 and 10 LT. Variation pattern of B1 in general, is identical in all the seasons with lower values of B1 by daytime than by night. Comparative studies of B0 with those obtained with the IRI model show that in general, IRI (B0 Tab.) option reveals better agreement with the observations during all the seasons for local times from about 10 LT to about 16 LT, while outside this time period IRI (Gulyaeva) matches well with the observations. The predicted B1 parameter, using IRI (B0 Tab.) is close to observations in terms of diurnal variation, while B1 using IRI (Gulyaeva) option, assumes a fixed value of 3 at all local times irrespective of season.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号