首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We present CCD photometry in the Washington system C and T1 passbands down to T1  19.5 magnitudes in the fields of Czernik 26, Czernik 30, and Haffner 11, three poorly studied open clusters located in the third Galactic quadrant. We measured T1 magnitudes and C ? T1 colors for a total of 6472 stars distributed throughout cluster areas of 13.6′ × 13.6′ each. Cluster radii were estimated from star counts in appropriate-sized boxes distributed throughout the entire observed fields. Based on the best fits of isochrones computed by the Padova group to the (C ? T1, T1) color-magnitude diagrams (CMDs), we derived color excesses, heliocentric distances and ages for the three clusters. These are characterized by a relatively small angular size and by a high field star contamination. We performed a firm analysis of the field star contamination of the CMDs and examined different relationships between the position in the Galaxy of known open clusters located within 1 kpc around the three studied ones, their age and their interstellar visual absorption. We confirm previous results in the sense that the closer the cluster birthplace to the Galactic plane, the higher the interstellar visual absorption. We also found that the space velocity dispersion perpendicular to the Galactic plane diminishes as the clusters are younger. The positions, interstellar visual absorptions, ages, and metallicities of the three studied clusters favor the hypothesis that they were not born in the recently discovered Canis major (CMa) dwarf galaxy before it was accreted by the Milky Way.  相似文献   

2.
3.
Assuming that soft X-ray sources in symbiotic stars result from strong thermonuclear runaways, and supersoft X-ray sources from weak thermonuclear runaways or steady hydrogen burning symbiotic stars, we investigate the Galactic soft and supersoft X-ray sources in symbiotic stars by means of population synthesis. The Galactic occurrence rates of soft X-ray sources and supersoft X-ray sources are from ~2 to 20 yr?1, and ~2 to 17 yr?1, respectively. The numbers of X-ray sources in symbiotic stars range from 2390 to 6120. We simulate the distribution of X-ray sources over orbital periods, masses and mass accretion rates of white dwarfs. The agreement with observations is reasonable.  相似文献   

4.
The reflex motion of a star induced by a planetary companion is too small to detect by photographic astrometry. The apparent discovery in the 1960s of planetary systems around certain nearby stars, in particular Barnard’s star, turned out to be spurious. Conventional stellar radial velocities determined from photographic spectra at that time were also too inaccurate to detect the expected reflex velocity changes. In the late 1970s and early 1980s, the introduction of solid-state, signal-generating detectors and absorption cells to impose wavelength fiducials directly on the starlight, reduced radial velocity errors to the point where such a search became feasible. Beginning in 1980, our team from UBC introduced an absorption cell of hydrogen fluoride gas in front of the CFHT coudé spectrograph and, for 12 years, monitored the radial velocities of some 29 solar-type stars. Since it was assumed that extra-solar planets would most likely resemble Jupiter in mass and orbit, we were awarded only three or four two-night observing runs each year. Our survey highlighted three potential planet hosting stars, γ Cep (K1 IV), β Gem (K0 III), and ? Eri (K2 V). The putative planets all resembled Jovian systems with periods and masses of: 2.5 years and 1.4 MJ, 1.6 years and 2.6 MJ, and 6.9 years and 0.9 MJ, respectively. All three were subsequently confirmed from more extensive data by the Texas group led by Cochran and Hatzes who also derived the currently accepted orbital elements.None of these three systems is simple. All five giant stars and the supergiant in our survey proved to be intrinsic velocity variables. When we first drew attention to a possible planetary companion to γ Cep in 1988 it was classified as a giant, and there was the possibility that its radial velocity variations and those of β Gem (K0 III) were intrinsic to the stars. A further complication for γ Cep was the presence of an unseen secondary star in an orbit with a period initially estimated at some 30 years. The implication was that the planetary orbit might not be stable, and a Jovian planet surviving so close to a giant then seemed improbable. Later observations by others showed the stellar binary period was closer to 67 years, the primary was only a sub-giant and a weak, apparently synchronous chromospheric variation disappeared. Chromospheric activity was considered important because κ1 Cet, one of our program stars, showed a significant correlation of its radial velocity curve with chromospheric activity.? Eri is a young, magnetically active star with spots making it a noisy target for radial velocities. While the signature of a highly elliptical orbit (e = 0.6) has persisted for more than three planetary orbits, some feel that even more extensive coverage is needed to confirm the identification despite an apparent complementary astrometric acceleration detected with the Hubble Space Telescope.We confined our initial analyses of the program stars to looking for circular orbits. In retrospect, it appears that some 10% of our sample did in fact have Jovian planetary companions in orbits with periods of years.  相似文献   

5.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

6.
We suggest that planets, brown dwarfs, and even low mass stars can be formed by fragmentation of protoplanetary disks around very massive stars (M ? 100 M). We discuss how fragmentation conditions make the formation of very massive planetary systems around very massive stars favorable. Such planetary systems are likely to be composed of brown dwarfs and low mass stars of ~0.1–0.3 M, at orbital separations of ~ few × 100–104 AU. In particular, scaling from solar-like stars suggests that hundreds of Mercury-like planets might orbit very massive stars at ~103 AU where conditions might favor liquid water. Such fragmentation objects can be excellent targets for the James Webb Space Telescope and other large telescopes working in the IR bands. We predict that deep observations of very massive stars would reveal these fragmentation objects, orbiting in the same orbital plane in cases where there are more than one object.  相似文献   

7.
《New Astronomy》2007,12(6):507-521
The dynamics of the dwarf-spheroidal (dSph) galaxies in the gravitational field of the Galaxy is investigated with particular reference to their susceptibility to tidal break-up. Based on the observed paucity of the dSphs at small Galactocentric distances, we put forward the hypothesis that subsequent to the formation of the Milky Way and its satellites, those dSphs that had orbits with small perigalacticons were tidally disrupted, leaving behind a population that now has a relatively larger value of its average perigalacticon to apogalacticon ratio and consequently a larger value of its r.m.s. transverse to radial velocities ratio compared to their values at the time of formation of the dSphs. We analyze the implications of this hypothesis for the phase space distribution of the dSphs and that of the dark matter (DM) halo of the Galaxy within the context of a self-consistent model in which the functional form of the phase space distribution of DM particles follows the King model, i.e. the ‘lowered isothermal’ distribution and the potential of the Galaxy is determined self-consistently by including the gravitational cross-coupling between visible matter and DM particles. This analysis, coupled with virial arguments, yields an estimate of ≳270 km s−1 for the circular velocity of any test object at galactocentric distances of ∼100 kpc, the typical distances of the dSphs. The corresponding self-consistent values of the relevant DM halo model parameters, namely, the local (i.e., the solar neighbourhood) values of the DM density and velocity dispersion in the King model and its truncation radius, are estimated to be ∼0.3 GeV cm−3, >350 km s−1 and ≳150 kpc, respectively. Similar self-consistent studies with other possible forms of the DM distribution function will be useful in assessing the robustness of our estimates of the Galaxy’s DM halo parameters.  相似文献   

8.
《New Astronomy》2007,12(2):117-123
Both V701 Sco and BH Cen are two early-type short-period overcontact systems (P = 0.d762 and P = 0.d792, respectively). V701 Sco is a member of the young galactic cluster NGC 6383, while BH Cen is a component of a younger galactic cluster IC 2944 where star formation is in process. They provide good opportunity to understand the formation and evolution of binary stars. In the present paper, orbital period changes of the two binaries are investigated. It is discovered that the orbital period of BH Cen shows a long-term increase with a rate of dP/dt = +1.70(±0.39) × 10−7 days/year while it undergoes a cyclic oscillation with a period of 44.6 years and an amplitude of A3 = 0.d0216. For V701 Sco, its O-C curve reveals a periodic change with a period of 41.2 years and amplitude of A3 = 0.d0158. The mass ratio of BH Cen is 0.84, but V701 Sco contains twin B1-1.5V type stars with a mass ratio of unit. The continuous period increase of BH Cen is caused by the mass transfer from the less massive component to the more massive one at a rate of dM2/dt = 3.5 × 10−6 days/year.The cyclic period changes of both systems can be plausibly explained as the results of light-travel time effects suggesting that they are triple systems. The astrophysical parameters of the unseen tertiary components in the two systems have been determined. We think that the invisible tertiary components in both binaries played an important role in the formations and evolutions of the overcontact configurations by bringing angular momentum out from the central systems. For BH Cen, this process created the initial short period and will support its evolution into an overcontact configuration via a Case A mass transfer within the life time of the extremely young cluster IC 2944. For V701 Sco, two identical zero-age main-sequence components in an overcontact configuration suggest that it may have been formed by fission, possibly by the fission of the third body. The fact that no long-term continuous period variations were found for V701 Sco may suggest that an overcontact binary with the mass ratio of unity can be in an equilibrium revealing that the original configuration of the binary was overcontact as is its present state. It has been reported that faint stars in the two extremely young clusters are relatively scare. From the present study, it is shown that faint stars in young clusters are usually formed as companions of OB stars (including binaries). It is very difficult to detect them because of their low luminosity when compared with the more luminous OB stars.  相似文献   

9.
Radiation of supersoft X-ray sources (SSS) dominates both the supersof X-ray and the far-UV domain. A fraction of their radiation can be reprocessed into the thermal nebular emission, seen in the spectrum from the near-UV to longer wavelengths. In the case of symbiotic X-ray binaries (SyXBs) a strong contribution from their cool giants is indicated in the optical/near-IR. In this paper I introduce a method of multiwavelength modelling the spectral energy distribution (SED) of SSSs from the supersoft X-rays to the near-IR with the aim to determine the physical parameters of their composite spectra. The method is demonstrated on two extragalactic SSSs, the SyXB RX J0059.1-7505 (LIN 358) in the Small Magellanic Cloud (SMC), RX J0439.8-6809 in the Large Magellanic Cloud (LMC) and two Galactic SSSs, the classical nova RX J2030.5+5237 (V1974 Cyg) during its supersoft phase and the classical symbiotic star RX J1601.6+6648 (AG Dra) during its quiescent phase. The multiwavelength approach overcomes the problem of the mutual dependence between the temperature, luminosity and amount of absorption, which appears when only the X-ray data are fitted. Thus, the method provides an unambiguous solution. It was found that selection of the model (a blackbody or an atmospheric model) is not of crucial importance in fitting the global X-ray/IR SED. The multiwavelength modelling of the SED of SSSs is essential in determining their physical parameters.  相似文献   

10.
《New Astronomy》2004,9(1):51-57
We have conducted high-speed photometric observations of the suspected cataclysmic variable V747 Cyg. The literature data about the spectra of this star are conflicting. Zwitter and Munari [A&AS 107 (1994) 503] obtained spectroscopic observations which confirmed the cataclysmic variable nature of V747 Cyg, whereas Downes et al. [AJ 110 (1995) 1824] have concluded that this object may be a Be + M binary rather than a cataclysmic variable. Our observations revealed the complete absence of the rapid flickering in this star at a millimagnitude level. This phenomenon is to be inherent in all cataclysmic variables. Instead, the lightcurves of V747 Cyg showed probably periodic smooth low-amplitude variations that were visible during each observational night. When V747 Cyg was observed in two colours simultaneously, these variations had the equal phases and amplitudes. A periodogram analysis revealed probable periods of 5.77, 7.41 and 7.59 h. These periods and the amplitude as well as the oscillation behaviour in the different colours are typical of variable Be stars. Hence, V747 Cyg may be a variable Be star but not a cataclysmic variable.  相似文献   

11.
We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of ΔT = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O’Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O’Connell effect is explained by the presence of a hot spot on the primary component.  相似文献   

12.
13.
《New Astronomy》2007,12(2):146-160
We point out that although conventional stars are primarily fed by burning of nuclear fuel at their cores, in a strict sense, the process of release of stored gravitational energy, known as, Kelvin–Helmholtz (KH) process is either also operational albeit at an arbitrary slow rate, or lying in wait to take over at the disruption of the nuclear channel. In fact, the latter mode of energy release is the true feature of any self-gravity bound object including stars. We also highlight the almost forgotten fact that Eddington was the first physicist to introduce special relativity into the problem and correctly insist that, actually, total energy stored in a star is not the mere Newtonian energy but the total mass energy (E = Mc2). Accordingly, Eddington defined an “Einstein time scale” of Evolution where the maximum age of the Sun turned out to be tE  1.4 × 1013 yr. This concept has a fundamental importance though we know now that Sun in its present form cannot survive for more than 10 billion years. We extend this concept by introducing general relativity and show that the minimum value of depletion of total mass–energy is tE = ∞ not only for Sun but for and sufficiently massive or dense object. We propose that this time scale be known in the name of “Einstein–Eddington”. We also point out that, recently, it has been shown that as massive stars undergo continued collapse to become a Black Hole, first they become extremely relativistic radiation pressure supported stars. And the life time of such relativistic radiation pressure supported compact stars is indeed dictated by this Einstein–Eddington time scale whose concept is formally developed here. Since this observed time scale of this radiation pressure supported quasistatic state turns out to be infinite, such objects are called eternally collapsing objects (ECO). Further since ECOs are expected to have strong intrinsic magnetic field, they are also known as “Magnetospheric ECO” or MECO.  相似文献   

14.
Using UBVRI CCD data taken from 104-cm Sampurnanand Telescope, ARIES, Nainital, we present the structure, initial mass function and mass segregation of three young age (∼10 Myr) open star clusters: NGC 2129, NGC 1502 and King 12. Based on photometric as well as astrometric criteria, the cluster member stars as well as field stars have been identified. We construct luminosity function which is further used to estimate the mass functions by employing theoretical stellar evolutionary isochrones. The entire cluster region mass function (MF) slopes for NGC 2129, NGC 1502 and King 12 are obtained as −2.55 ± 0.14, −2.73 ± 0.36 and −1.94 ± 0.12 respectively. It is found that changes in the MF slope of King 12 are significantly different compared to NGC 2129 and NGC 1502 from inner region to outer region. The MF slope for King 12 is steeper at larger radii. The dynamical relaxation times for all three clusters are found to be less than age of the clusters. This indicates that all these clusters are dynamically relaxed. We show that for NGC 1502 and King 12, passing off of low mass stars from the inner region of the clusters to the halo occurs during the course of evolution.  相似文献   

15.
Among evolved massive stars likely in transition to the Wolf–Rayet phase, IRC + 10420 is probably one of the most enigmatic. It belongs to the category of yellow hypergiants and it is characterized by quite high mass loss episodes. Even though IRC + 10420 benefited of many observations in several wavelength domains, it has never been a target for an X-ray observatory. We report here on the very first dedicated observation of IRC + 10420 in X-rays, using the XMM-Newton satellite. Even though the target is not detected, we derive X-ray flux upper limits of the order of 1–3 × 10−14 erg cm−2 s−1 (between 0.3 and 10.0 keV), and we discuss the case of IRC + 10420 in the framework of emission models likely to be adequate for such an object. Using the Optical/UV Monitor on board XMM-Newton, we present the very first upper limits of the flux density of IRC + 10420 in the UV domain (between 1800 and 2250 Å and between 2050 and 2450 Å). Finally, we also report on the detection in this field of 10 X-ray and 7 UV point sources, and we briefly discuss their properties and potential counterparts at longer wavelengths.  相似文献   

16.
We have observed the massive star formation region W75N in 12CO J = 3 ? 2 with KOSMA. The profile of 12CO J = 3 ? 2 indicated that besides the 9 km s?1 component, there is another component of ?3 km s?1, which is associated with another star formation region, DR21N, located to the north of DR21. We derived the physical and dynamical parameters of the core and high velocity gas associated with the two components separately. Star forming activities were investigated, including outflows and infall analysis. The two regions overlap in space and are not connected in velocity. We found that the cloud–cloud collision scenario may not apply for the DR21/W75N case.  相似文献   

17.
We reviewed the recent progress in the field of stellar/galactic archeology, which is a study of the relics from the early galaxy. The oldest and most pristine objects that can be observed in the galaxy are the low mass metal poor stars of the Milky Way. They were formed during the early phases, when the ISM might have been polluted only by the Pop-III supernovae. With the recent large spectroscopic surveys (e.g. HK survey by Beers and collaborators, the Hamburg-ESO survey by Christlieb and collaborators and Sloan Digital Sky Survey) it has been possible to get clues on the nature of the first stars that has contributed to the heavy elements. Most of these metal-poor low mass stars also retain their signature of the early dynamical evolution of the galaxy, which can be studied through their orbits around the galaxy and spatial distribution. Here, we discuss the connection between the chemical and the kinematical properties of metal-poor stars in order to probe the early galaxy formation. We also discuss about the globular clusters, the satellite galaxies around the Milky Way and its possible contribution to the formation of the galaxy halo.  相似文献   

18.
Stellar abundance pattern of n-capture elements such as barium is used as a powerful tool to infer how the star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to that in Galactic metal-poor stars. The common feature of these two correlations can be realized by our in homogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ∼ 26 km s-1. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value ≲ 10 km s-1 by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ∼ 25 times larger than at present. In this model, supernovae immediately after the end of the star formation can expel the remaining gas over the gravitational potential of the dSph galaxy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
An updated period analysis for the overcontact eclipsing binary ER Orionis is presented. Featured is an improved derivation of parameters for the light time effect (LTE) due to the third star (in actuality, a pair of stars) utilising the latest set of eclipse timings. The very good fit between the eclipse timing differences (ETD) plot (otherwise known as an O–C diagram) and the theoretical ETD curve makes possible an improved determination of the rate of mass interchange between the binary pair, dm1/dt = +1.83(6) × 10−7 Mʘ/year. In addition, the mass of the companion system (in actuality, m3 sin i) and the elements of its orbit were computed. A suggestion is made for a method of future determination of the inclination of the orbit of the companion system.  相似文献   

20.
《New Astronomy》2007,12(7):556-561
The results of a long-term UBV photometric monitoring of the red supergiant (RSG) star V424 Lac are presented. V424 Lac shows multiperiodic brightness variations which can be attributed to pulsational oscillations. A much longer period (P = 1601 d), that allows us to classify this star as a long secondary period variable star (LSPV) has been also detected. The B  V and U  B color variations related to the long secondary period (LSP) are similar to those related to the shorter periods, supporting the pulsational nature of LSP. The long period brightness variation of V424 Lac is accompanied by a near-UV (NUV) excess, which was spectroscopically detected in a previous study [Massey, P., Plez, B., Levesque, E.M., et al., 2005. ApJ 634, 1286] and which is now found to be variable from photometry. On the basis of the results found for V424 Lac, the NUV excess recently found in a number of RSGs may be due not solely to circumstellar dust but may also have a contribution from a still undetected LSP variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号