首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Global positioning system (GPS) networks have provided an opportunity to study the dynamics and continuous changes in the ionosphere by supplementing ionospheric studies carried out using various techniques including ionosondes, incoherent scatter radars and satellites. Total electron content (TEC) is one of the physical quantities that can be derived from GPS data, and provides an indication of ionospheric variability. This paper presents a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. Three South African locations were identified and used in the development of an input space and NN architecture for the model. The input space included the day number (seasonal variation), hour (diurnal variation), Sunspot Number (measure of the solar activity), and magnetic index (measure of the magnetic activity). An analysis was done by comparing predicted NN TEC with TEC values from the IRI-2001 version of the International Reference Ionosphere (IRI), validating GPS TEC with ionosonde TEC (ITEC) and assessing the performance of the NN model during equinoxes and solstices. For this feasibility model, GPS TEC was derived for a limited number of years using an algorithm still in the early phases of validation. However, results show that NNs predict GPS TEC more accurately than the IRI at South African GPS locations, but that more good quality GPS data is required before a truly representative empirical GPS TEC model can be released.  相似文献   

2.
It is well known that ionospheric perturbations are characterised by strong horizontal gradients and rapid changes of the ionisation. Thus, space weather induced severe ionosphere perturbations can cause serious technological problems in Global Navigation Satellite Systems (GNSS) such as GPS. During the severe ionosphere storm period of 29–31 October 2003, reported were several significant malfunctions due to the adverse effects of the ionosphere perturbations such as interruption of the WAAS service and degradation of mid-latitudes GPS reference services. To properly warn service users of such effects, a quick evaluation of the current signal propagation conditions expressed in a suitable ionospheric perturbation index would be of great benefit. Preliminary results of a comparative study of ionospheric gradients including vertical sounding and Total Electron Content (TEC) data are presented. Strong enhancements of latitudinal gradients and temporal changes of the ionisation are observed over Europe during the 29–30 October storm period. The potential use of spatial gradients and rate of change of foF2 and TEC characterising the actual perturbation degree of the ionosphere is discussed. It has been found that perturbation induced spatial gradients of TEC and foF2 strongly enhance during the ionospheric storm on 29 October over the Central European region in particular in North–South direction exceeding the gradients in East–West direction by a factor of 2.  相似文献   

3.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

4.
Measurements at GPS ground stations of the International GPS Service (IGS) havebeen used to derive the total electron content (TEC) of the ionosphere over Europe and overthree North American stations for the 6–11 January 1997 storm event. The derived TEC dataindicate large deviations from the average behaviour especially at high latitudes on thenight-side/early morning longitude sector.The high-latitude perturbation causes a well-pronounced positive phase on the day-sidesector over Europe.Both meridional winds as well as transient electric fields are assumed to contribute to thesignature of the ionospheric perturbation propagating from high to low latitudes. Theobservations indicate a subsequent enhanced plasma loss which is probably due to theequatorward expansion of storm induced composition changes.  相似文献   

5.
The conjugacy effects of the GPS scintillation activities during the geomagnetic storms of October 2003, November 2003 and July 2004 have been investigated at the approximately geomagnetically conjugate stations: Scott Base, Antarctica (SBA) and Resolute Cornwallis Island (RESO) in the high Arctic region. The measurements aim at investigation of the similarities and differences of the scintillation activities occurring at the conjugate points in the polar regions under storm conditions and examine the relationship between the Storm Enhanced Density (SED) and scintillation activity. The measurements of the scintillation activities obtained from total scintillation index during these storm periods at both hemispheres showed asymmetry in the ionospheric scintillation occurrence at the conjugate points. Pronounced scintillation activity was observed at the nightside hemisphere with the total scintillation index higher than at the dayside hemisphere. The results also show that the durations of severe scintillation activity were longer at the nightside hemisphere. The measurements showed that the intense scintillation periods were corresponding to the presence of the SED events where more pronounced SED events were observed over the nightside hemisphere.  相似文献   

6.
The storm period of 8–12 November 2004 offers an opportunity for insight into the phenomena of low-latitude ionospheric structure during geomagnetically disturbed times because of the strength of the disturbances, the timing of the storms, and the instrumentation that was operating during the interval. We will take advantage of these factors to model the ambient ionosphere and the plasma turbulence responsible for radio scintillation within it, using the AFRL low-latitude ambient/turbulent ionospheric model and the storm-time model features described in the companion paper [Retterer, J.M., Kelley, M.C., 2009. Solar-wind drivers for low-latitude ionospheric models during geomagnetic storms. J. Atmos. Solar-Terr. Phys., this issue]. The model plasma densities show very good agreement with the densities measured by the Jicamarca ISR as well as with the total electron content (TEC) measured by the Boston College South American chain of GPS receivers. The detection by the radar of coherent returns from plasma turbulence match well the times of predicted ionospheric instability. The predicted geographic extent of the occurrence of equatorial plasma bubbles was matched by DMSP satellite observations and our forecasts of scintillation strength were validated with measurements of S4 at Ancon and Antofagasta by stations of the AFRL SCINDA network.  相似文献   

7.
Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.  相似文献   

8.
The variations in the total electron content (TEC), obtained from the data of 11 ground-based GPS stations in the region (5°S–80°N; 110–160°E) in the period August 2–15, 2006, have been analyzed in order to search for possible ionospheric manifestations of the SAOMAI powerful typhoon (August 5–11, 2006) near the south-eastern coast of China. The global TEC maps (GIM) have also been used. In the region of the typhoon action during the magnetic storm of August 7, 2006, an intensification of the TEC variations in the evening local time within the 32–128 min periods range was detected. However, this effect was most probably caused by the dynamics of the irregular structure of the equatorial anomaly and by the disturbed geomagnetic situation (Kp ~ 3–6, Dst varied from ?74 to ?153 nT). The analysis of the diurnal variations in the absolute values of TEC and TEC variations with periods of 2–25 min did not reveal a substantial increase in the intensity and changes in the spectrum of the TEC variations in the period of typhoon action as compared to the adjacent days. Thus, we failed to detect ionospheric disturbances unambiguously related to the SAOMAI typhoon.  相似文献   

9.
基于陆态网络GPS数据的电离层空间天气监测与研究   总被引:7,自引:2,他引:5       下载免费PDF全文
中国大陆构造环境监测网络(简称陆态网络)是以全球卫星导航定位系统(GNSS)为主,辅以多种空间观测技术,实时动态监测大陆构造环境变化,探求其对资源、环境和灾害的影响的地球科学综合观测网络.基于陆态网络约200个基准站的GPS观测数据,本文探讨了其在电离层空间天气监测与研究方面的应用.包括磁暴期间电离层暴扰动形态,大尺度电离层行进式扰动,太阳耀斑引起的电离层骚扰和低纬电离层不规则体结构等.研究结果表明:陆态网络布局合理,观测数据质量良好,完全可用于中国及周边地区电离层空间天气监测与研究,为进一步开展我国电离层空间天气预警和预报奠定了观测基础.  相似文献   

10.
本文利用设在武汉(11436°E,3053°N,磁纬194°)的GPS电离层TEC和电波闪烁监测仪的测量数据,分析了2004年11月强磁暴期间TEC的响应以及电波闪烁和TEC起伏的特征.结果表明,在这次强磁暴期间,武汉及其邻近地区电离层TEC的响应以正暴相为主,正暴相分别出现在两次主相期间,最大正偏离达到50 TECU.这次磁暴另一个重要影响是主相期间L波段振幅闪烁的活动性及其强度显著增强.S4指数最大接近10.伴随增强的闪烁活动,多次观测到深度耗尽的等离子体泡与TEC起伏,TEC变化率的标准差ROTI指数也显著增强.分析揭示, ROTI指数与S4指数呈正相关,相关系数达到097.线性回归计算得到,ROTI和S4的比率为964.  相似文献   

11.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered according to measurements of the total electron content (TEC) during the magnetic storms of October 29–31, 2003, and November 7–11, 2004, has been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region (foF2) were used for this purpose. The variations in TEC and foF2 were similar for all events mentioned above. The previous assumption that the region of thickness 150–200 km in the vicinity of the ionospheric F region mainly contributes to TEC modulation was confirmed for the cases when the electron density disturbance at an F region maximum was not more than 50%. However, this region probably becomes more extensive in vertical when the electron density disturbance in the vicinity of the ionospheric F region is about 85%.  相似文献   

12.
GPS satellite transmissions have been used to study the development of moderateionospheric phase irregularities. The use of the multi-station, multi-path observations of the GPSbeacons has allowed the study of the time development of irregularities as a function of latitudeand longitude of individual storms. The basic storms studied were those of January 10, April10–11, and May 15, 1997. The results from studying these storms showed the unique nature ofeach storm. For the three storms, data were available from four stations near 65° CorrectedGeomagnetic Latitude (CGL); the stations ranged from Fairbanks to Tromso. In addition, datafrom higher latitude stations are analysed. For the January storm, irregularity development startedat Fairbanks. Then as magnetic midnight approached longitudes to the west, the storm effectsreached the Tromso–Kiruna longitudes. For the April magnetic storm, at 65° CGL, irregularitydevelopment maximized at approximately the same UT at stations ranging in longitude fromFairbanks to Kiruna. For this storm, the development of irregularities was dominated by stormtime. The May storm irregularities were dominated by magnetic local time once the stormcommenced.With both total electron content and rate of change of total electron content (phasefluctuations) available, it was noted that over periods of minutes, clumps of irregularities wereaccompanied by increases in TEC. In addition total electron content increased over large areasduring maximum magnetic activity in the auroral oval. During the storms, ionograms showed thatthe altitude of maximum electron density fluctuated; at times the dominant maximum frequencywas noted in the E layer and at other times in the F layer. This fluctuation of electron density ineach layer during storms led to the conclusion that the turbulent activity within the auroral regiondominated the development of irregularities. The irregularities that are noted on trans-ionosphericpaths are therefore thought to be in both the E and the F layers with a combination of structuredhard and soft electron precipitation and coupling initiating the turbulent activity. The generalpositive correlation of one periods phase scintillation data with the Ultra Violet Imagerobservations as shown on POLAR indicates the importance of 100–200 km precipitation.However the very high occurrence of spread F at high latitudes as shown by both ground andsatellite ionosondes indicates the considerable contributions of F layer irregularities.  相似文献   

13.
In this paper, the total electron content (TEC) data from eight global positioning system (GPS) stations of the EUREF network, provided by IONOLAB (Turkey), were analyzed using discrete Fourier analysis to investigate the TEC variations over the Mediterranean before and during the strong earthquake of 12th October 2013, which occurred west of Crete, Greece. In accordance with the results of similar analyses in the area, the main conclusions of this study are the following: (a) TEC oscillations in a broad range of frequencies occur randomly over an area of several hundred km from the earthquake and (b) high frequency oscillations (f  0.0003 Hz, periods T  60 m) may point to the location of the earthquake with questionable accuracy. The fractal characteristics of the frequency distribution may point to the locus of the earthquake with higher accuracy. We conclude that the lithosphere–atmosphere–ionosphere coupling (LAIC) mechanism through acoustic or gravity waves could explain this phenomenology.  相似文献   

14.
Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26–29 April, pp. 510–517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15–(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during a solar minimum period characterized by quiet and moderate geomagnetic conditions. We also investigate the consistency of our plasmaspheric results by taking advantage of the specific donut-shaped geometry of the plasmasphere and applying the technique at 12 stations distributed roughly over four geomagnetic latitudes and three longitude sectors.  相似文献   

15.
This paper presents an investigation of geomagnetic storm effects in the equatorial and middle-low latitude F-region in the West Pacific sector during the intense geomagnetic storm on 13–17 April, 2006. The event, preceded by a minor storm, started at 2130 UT on April 13 while interplanetary magnetic field (IMF) Bz component was ready to turn southward. From 14–17 the ionosphere was characterized by a large scale enhancement in critical frequency, foF2 (4~6 MHz) and total electron content (TEC) (~30TECU, 1TECU=1×1016el/m2) followed by a long-duration negative phase observed through the simultaneous ionospheric sounding measurements from 14 stations and GPS network along the meridian 120°E. A periodic wave structure, known as traveling ionospheric disturbances (TIDs) was observed in the morning sector during the initial phase of the storm which should be associated with the impulsive magnetospheric energy injection to the auroral. In the afternoon and nighttime, the positive phase should be caused by the combination of equatorward winds and disturbed electric fields verified through the equatorial F-layer peak height variation and modeled upward drift of Fejer and Scherliess [1997. Empirical models of storm time equatorial electric fields. Journal of Geophysical Research 102, 24,047–24,056]. It is shown that the large positive storm effect was more pronounced in the Southern Hemisphere during the morning-noon sector on April 15 and negative phase reached to lower magnetic latitudes in the Northern Hemisphere which may be related to the asymmetry of the thermospheric condition during the storm.  相似文献   

16.
Observations from a network of specially equipped GPS scintillation receivers in Northern Europe are used to investigate the dynamics of ionospheric plasma during the storm events of 30 October and 20 November 2003. The total electron content (TEC) and scintillation data, combined with ionospheric tomography produced by the multi-instrument data analysis system (MIDAS), reveal strong enhancements and steep gradients in TEC during nighttime under a prevailing negative Bz component of the interplanetary magnetic field (IMF). Amplitude and phase scintillation maxima are often co-located with the TEC gradients at the edge of plasma patches, revealing the presence of small-scale irregularities and suggesting association with a tongue of ionization (TOI) convecting in an anti-sunward direction from the American sector across the polar cap. Similarities and differences between the ionospheric response to the two storms are investigated. The 30 October event reveals a quite complex scenario showing two phases of plasma dynamics: the former reflects the expected convection pattern for IMF Bz southward and the latter possibly indicates a sort of TEC plasma stagnation signature of the more complex convection patterns during several positive/negative excursions of IMF Bz.  相似文献   

17.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

18.
Published values of Total Electron Content (TEC) measured by ATS-6 are used to assess the latest available IRI-2007 model during solar minimum over Indian sector covering equatorial to low-mid-latitudes stations. The study reveals that during all seasons and at all locations, in general, the TEC predicted by NeQuick and IRI01-corr options provided in the IRI-2007 model shows much better agreement with the TEC observations as compared to those generated by IRI-2001.option. TEC predicted using NeQuick option found to be little more closer to the observation except at equatorial station during daytime, while IRI-2001 option highly overestimates the TEC in all seasons and times.  相似文献   

19.
中国电离层TEC现报系统   总被引:18,自引:0,他引:18       下载免费PDF全文
作为最重要的电离层参量之一,电离层电子浓度总含量(TEC)可以通过当前广泛使用的全球定位系统(GPS)的信标进行观测.我们在我国北起漠河、经北京和武汉、南到三亚四个观测站建立了GPS接收站,经单站数据处理后将原始的单站GPS TEC观测数据上载到北京数据处理中心;采用我们发展的经验基函数模式算法,用实测数据估算格点TEC并提供给用户,同时生成覆盖中国疆域的TEC地图并在因特网上实时发布.这一电离层TEC现报系统是我国首个类似的技术系统,在观测站布局和TEC地图算法上有所创新.该系统已用于实时监测我国电离层环境,并可为我国卫星定位导航和测控等技术系统的电波修正提供实测电离层数据.  相似文献   

20.
2015年3月磁暴期间中国中低纬地区电离层变化分析   总被引:9,自引:0,他引:9       下载免费PDF全文
2015年3月17日爆发了本太阳活动周最大的地磁暴,Dst指数达到-233 nT.本文利用电离层测高仪f_。F_2和h_mF_2、北斗同步卫星(BDSGEO)TEC以及GPS电离层闪烁S4指数对此次磁暴期间中国中低纬地区(北京、武汉、邵阳和三亚)的电离层变化进行分析,并对此次磁暴所引发电离层暴的可能机制进行了探讨.磁暴期间,中低纬电离层暴整体表现为正相暴之后长时间强的负相暴.3月17日白天中纬正相暴为风场抬升电离层所致,而驼峰区及低纬地区正相暴由东向穿透电场所引起;3月18日白天长时间的强负相暴为西向扰动发电机电场和成分扰动所引起;3月17和18日夜间的负相暴可能是日落东向电场受到抑制以及赤道向风场对扩散的抑制导致驼峰向赤道压缩所致,同时被抑制的日落东向电场强度不足以触发产生赤道扩展F,导致低纬三亚和邵阳夜间电离层闪烁在磁暴期间受到完全抑制.这是我们首次基于北斗同步卫星TEC组网观测开展的电离层暴研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号