首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the northern hemisphere winter of 2005–2006, transient luminous events (TLEs) known as ‘sprites’ and ‘elves’ were imaged over thunderstorm cells in the eastern Mediterranean. Simultaneously, extremely low frequency (ELF) data (ELF: 3–3000 Hz) were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the transient optical emissions in the upper atmosphere. In this study, we found that for 87% (Israel) and 77% (Hungary) of optically observed TLEs an intense ELF transient event was recorded. These stations are located some 500 and 2100 km, respectively, from the region of the TLEs. All ELF transients that were associated with TLEs were caused by lightning discharges with positive polarity. Calculation of the charge moment change showed values between 600 and 2800 C km with a peak around 1000 C km. Additionally, the time delay between the +CG and ensuing sprite was 76±34 ms and it was displaced up to 50 km from its parent CG.One of our objectives in the present study was to characterize, based on the ELF radiation from lightning, the electromagnetic (EM) waveforms of the lightning discharges which generate TLEs in the time and frequency domains, and to compare them with other lightning discharges occurring in the same thunderstorm cell at approximately the same time, but which did not produce TLEs. The survey for a typical EM waveform showed no unique ELF signature for lightning discharges associated with either sprites or elves.  相似文献   

2.
In this paper, based on theoretical estimation of the achievable electric fields during the physical development process of a long spark under different conditions, we show that the encounter of negative and positive streamer fronts just before the final breakdown is one scenario, under which the observed X-ray bursts in long sparks is highly possible. Our calculations show that for example in an 80 cm long rod–sphere air gap at atmospheric pressure with negative lightning impulse breakdown voltage of about 925 kV, electrons are accelerated to values in the range of 100–300 keV during the encounter. Subsequently, these electrons gain more energy moving through the potential gradient of the positive streamer region. The total gain of energy by electrons may reach 300–500 keV. The results also show that negative discharges can produce more energetic electrons than positive. If the suggested mechanism of X-ray production in long sparks is correct, then the X-ray burst may consist of several pulses closely spaced in time. Time resolved photography in simultaneous measurement of X-rays would be able to confirm this prediction.  相似文献   

3.
During earthquake preparation geophysical processes occur over varying temporal and spatial scales, some leaving their mark on the surface environment, on various biota, and even affecting the ionosphere. Reports on pre-seismic changes in animal behaviour have been greeted with scepticism by the scientific community due to the necessarily anecdotal nature of much of the evidence and a lack of consensus over possible causal mechanisms. Here we present records of changes in the abundance of mammals and birds obtained over a 30 day period by motion-triggered cameras at the Yanachaga National Park, Peru, prior to the 2011 magnitude 7.0 Contamana earthquake. In addition we report on ionospheric perturbations derived from night-time very low frequency (VLF) phase data along a propagation paths passing over the epicentral region. Animal activity declined significantly over a 3-week period prior to the earthquake compared to periods of low seismic activity. Night-time ionospheric phase perturbations of the VLF signals above the epicentral area, fluctuating over the course of a few minutes, were observed, starting 2 weeks before the earthquake. The concurrent observation of two widely different and seemingly unconnected precursory phenomena is of interest because recently, it has been proposed that the multitude of reported pre-earthquake phenomena may arise from a single underlying physical process: the stress-activation of highly mobile electronic charge carriers in the Earth’s crust and their flow to the Earth’s surface. The flow of charge carriers through the rock column constitutes an electric current, which is expected to fluctuate and thereby emit electromagnetic radiation in the ultralow frequency (ULF) regime. The arrival of the charge carriers can lead to air ionization at the ground-to-air interface and the injection of massive amounts of positive airborne ions, known to be aversive to animals.  相似文献   

4.
井中声电转换波场辐射能量定量分析   总被引:1,自引:1,他引:1       下载免费PDF全文
井中声激发极化效应研究是实现声激发极化测井实用化的技术基础,实质上是声波在双相孔隙介质中向电磁波的转化,其结果就是形成井中声电转换波场,最终表现为井中声场辐射能向电磁场能的转化.通过对双相孔隙介质中声激发极化过程声电转换波场能量的理论分析,研究了井中声电转换波场能量的总体构成,提出了井中低频声激发极化电场电能体密度的概念,并推导出具体表达式.通过采用实际地层参数模型进行井中低频声激发极化电场的模拟计算得到了井中低频声激发极化过程中电能体密度与声波频率与地层参数的相关关系.  相似文献   

5.
The observation of ULF/ELF electromagnetic waves in the frequency range below 50 Hz has been continued at Nakatsugawa (in the Gifu prefecture), Japan since 1998. This paper summarizes anomalous Schumann resonance (SR) phenomena and SR-like line emissions observed at Nakatsugawa in possible association with recent nearby earthquakes (EQs) (the 2004 Mid-Niigata prefecture and the 2007 Noto-Hanto (peninsula) EQs), which have been already described in detail by Ohta et al. (2009). The intensity of particular modes of SR increased before these large EQs and the excitation of other anomalous SR-like line emissions also existed at the frequency shifted by about 2 Hz from the typical SR modes. Since temporal changes of the anomalous SR modes and line emissions are synchronous in time, there might be a possibility that the line emission is a consequence of the anomalous SR. In this paper we propose an interpretation of those anomalous phenomena in terms of excitation of gyrotropic waves due to input wave from below with a band from 15 to 20 Hz as an exciter. The theoretical computational results seem to be generally consistent with the observational finding.  相似文献   

6.
电磁监测台站观测的舒曼谐振背景变化   总被引:3,自引:0,他引:3       下载免费PDF全文
舒曼谐振是由闪电激发的电离层与地面之间的全球电磁震荡,在地球与电离层空腔中传播,由于共振作用,其电磁波能量明显高于其他频率电磁波能量.舒曼谐振具有稳定的频域参数和频谱结构,近几年的研究发现,地震发生前会使这些固有参数发生扰动,因此利用舒曼谐振异常来进行地震短临监测可能是一种行之有效的手段.要判断舒曼谐振地震电磁异常,了解舒曼谐振电磁场背景变化规律是前提.本文利用极低频电磁台站观测的天然电磁场数据,处理和分析了各台站观测的舒曼谐振频率电磁场功率谱随时间的变化,得到了舒曼谐振随季节和纬度的背景变化规律.并提出将舒曼谐振背景变化规律应用到地震短临监测预报中,能够为今后辨别地震监测中的舒曼谐振异常提供物理依据.  相似文献   

7.
“地-电离层”模式有源电磁场一维正演   总被引:1,自引:0,他引:1       下载免费PDF全文
“地-电离层”模式有源电磁法由于其在地球物理勘探和地震预报方面的良好应用前景,成为地球物理电磁法研究新的热点.近年来国内开始了“地-电离层”模式有源电磁法研究,作者已经实现了当地球层为均匀半空间时的正演,但实际上地球并不是均匀半空间.本文在此基础上,采用R函数法进行公式推导,以高采样密度的Hankel滤波系数实现数值模...  相似文献   

8.
In the Australian landscape larg stores of soluble salt are present naturally. In many cases it is attributable to salts entrapped as marine sediment in earlier geological time. At the district level, the need for information on the presence of saline subsurface material is increasing, particularly for its application to salinity hazard assessment and environmental management. This is the case in irrigated areas, where changes in hydrology can result in secondary salinisation. To reduce the expense, environmental studies use a regression relationship to make use of more readily observed measurements (e.g. electromagnetic (EM) data) which are strongly correlated with the variable of interest. In this investigation a methodology is outlined for mapping the spatial distribution of average subsurface (6–12 m) salinity (ECe — mS m? 1) using an environmental correlation with EM34 survey data collected across the Bourke Irrigation District (BID) in the Darling River valley. The EM34 is used in the horizontal dipole mode at coil configurations of 10 (EM34-10), 20 (EM34-20), and 40 (EM34-40). A multiple-linear regression (MLR) relationship is established between average subsurface ECe and the three EM34 signal data using a forward modeling stepwise linear modeling approach. The spatial distribution of average subsurface salinity generally reflects the known surface expression of point-source salinisation and provides information for future environmental monitoring and natural resource management. The generation of EM34 data on various contrived grids (i.e. 1, 1.5, 2. 2.5 and 3 km) indicates that in terms of accuracy, the data available on the 0.5 (RMSE = 188) and 1 km (RMSE = 283) grid are best, with the least biased predictions achieved using 1 (ME = ? 1) and 2 km (ME = 12) grids. Viewing the spatial distribution of subsurface saline material showed that the 0.5 km spacing is optimal, particularly in order to account for short-range spatial variation between various physiographic units. The Relative Improvement (RI) shows that increasing EM grids from 1, 1.5, 2, 2.5 to 3 km gave RI of ? 53, ? 100%, ? 107%, ? 128% and ? 140%, respectively. We conclude that at a minimum a 1 km grid is needed for reconnaissance EM34 surveying.  相似文献   

9.
Radiation with energies up to about 250 keV associated with the dart leader phase of rocket-triggered lightning were reported by Dwyer et al. (2004). The mechanism of X-ray generation by dart leaders, however, is unknown at present. Recently, Cooray et al., in pressPlease provide complete bibliographic details for Ref. cooray e al., in press and Saleh et al., in press if available., Cooray et al., 2009a developed physical concepts and mathematical techniques necessary to calculate the electric field associated with the tip of dart leaders. We have utilized the results of these calculations together with the energy dependent frictional force on electrons, as presented by Moss et al. (2006), to evaluate the maximum energy an electron will receive in accelerating in the dart-leader-tip electric field. The main assumptions made in performing the calculations are: (a) the dart leader channel is straight and vertical; (b) the path of the electrons are straight inside the channel; and (c) the decay of the channel temperature is uniform along the length of the dart leader. In the calculation, we have taken into account the fact that the electric field is changing both in space and time and that the gas in the defunct return stroke channel is at atmospheric pressure and at elevated temperature (i.e. reduced gas density). The results of the calculation show that for a given dart leader current there is a critical defunct-return-stroke-channel temperature above which the cold electron runaway becomes feasible. For a typical dart leader, this temperature is around 2500 K. This critical temperature decreases with increase in dart leader current. Since the temperature of the defunct return stroke channel may lie in the range of 2000–4000 K, the results show that the electric field at the tip of dart leaders is capable of accelerating electrons to MeV energy levels.  相似文献   

10.
Observational data of the seismic related VHF radio emissions at 41 and 53 MHz obtained at the four stations of Create Island are presented. The epicenter of EQs is located at the distance more than 300 km behind the horizon. It was shown that VHF radiation is generated at the altitudes 1–10 km in the atmosphere over the epicenter of EQs. The theory of generation of electromagnetic radiation by random electric discharges was developed. These discharges are excited by DC electric field enhanced up to the breakdown value in the atmosphere. The field is connected with the electric current flowing in the atmosphere–ionosphere circuit, whose source is generated by convective transport of charged aerosols, which are injected in the atmosphere by soil gases during the enhancement of seismicity. Calculations of the spectrum of electromagnetic radiation are derived, and the theoretical results are confirmed by observation data.  相似文献   

11.
In the framework of solving the problem of acoustic energy transfer from near-surface sources through the upper atmosphere, the propagation of sinusoidal signals of different origin is studied. All calculations are made by means of a model that takes into account the inhomogeneity of the atmosphere, nonlinear effects, absorption, divergence of wave front due to long-range acoustic wave propagation, etc., but does not include the effect of gravity. Infrasonic waves of various periods and their absorption at various heights of the atmosphere are investigated. The calculations show that a sinusoidal signal is destroyed by nonlinear processes during its upward propagation; it transforms into two, initial and final, impulses. The location of the “transformation zone” depends on frequency; its height increases with decreasing frequency. The acoustic waves can heat the upper atmosphere, for example, waves with a period of 3 min generated by thunderstorms can heat the atmosphere by up to ΔTa=13.08 K/day in the region of 323–431 km. The efficiency of a point artificial emitter is too weak to heat the atmosphere significantly.  相似文献   

12.
Surf zone drifters and a current meter were used to study the nearshore circulation patterns in the lee of groynes at Cottesloe Beach and City Beach in Western Australia. The circulation patterns revealed that a persistent re-circulation cell was present in the lee of the groyne which was driven by changes in wave set-up resulting from lower wave heights in the lee of the groyne. The re-circulation consisted of a longshore current directed towards the groyne which was deflected offshore due to groyne resulting in a rip current along the groyne face. The offshore-flowing rip current and the incoming waves converged at the offshore extent of this circulation cell, with the deflection of the rip current parallel to the shoreline and then completing the recirculation through an onshore component. The Eulerian measurements revealed that 55% of the currents on the lee side of the groyne were directed offshore and that these currents had a maximum speed of 2 m s?1. Spectral analysis of the wave heights and the currents revealed several corresponding peaks in the measured spectral densities with timescales between 12 s and 50 min. Numerical simulations of an idealised beach with a shore-normal groyne were conducted using a circulation model driven by waves, and confirmed the formation of a persistent eddy in the lee of the groyne. Sensitivity studies indicated that the incident wave angle, wave period, and especially the wave height controlled the circulation. The eddy vorticity, a measure of an eddy's strength, increased roughly proportional to an increase in the incident wave energy flux.  相似文献   

13.
Geoeiectromagnetic signals related to earthquakes have been detected in China and many other countries.Problems concerning the mechanism of the electromagnetic emission and transportation still remain unsolved,although several models have been proposed.We consider that the theory of "electromagnetic missile emission" may be used to solve this problem,and thus develops the basic ideal of the Electro Magnetic Missile Emission(EMME)model of the emission of electromagnetic signals before earthquakes:pulse variation of the stress state causes the emission of electrons,or sudden flow of the fluid,in a certain direction along or near the fault which is located at the focus of an earthquake,forming a pulse electric current; this current accordingly produces a kind of slowly attenuated EM Wave(electromagnetic missile,which may be observed on the surface of the earth)in the perpendicular direction.In other directions these EM waves vanish quickly and cannot reach ground level.  相似文献   

14.
The results obtained in this study show that as the dart leader tip passes a given point on the defunct return stroke channel the electric field increases within a fraction of a microsecond to values larger than the critical electric field necessary for the initiation of cold electron runaway in low-density air comprising the channel. These results are in support of the hypothesis that cold runaway electron breakdown may play a role in the emission of X-ray bursts by dart leaders. The calculations also show that the peak power dissipated by a typical dart leader is about 300–500 MW/m and the energy dissipated within the first 10 μs or so is about 500–600 J/m. Furthermore, the minimum resistance and the maximum radius of the core of a typical dart leader are estimated to be about 3 Ω/m and 0.003 m, respectively.  相似文献   

15.
High 4He/3He ratios of 100 000 to 160 000 found at HIMU ocean islands (“high μ,” where μ is the U/Pb ratio) are usually attributed to the presence of recycled oceanic crust in the HIMU mantle source. However, significantly higher 4He/3He ratios are expected in recycled crust after residence in the mantle for periods greater than 1 Ga. In order to better understand the helium isotopic signatures in HIMU basalts, we have measured helium and neon isotopic compositions in a suite of geochemically well-characterized basalts from the Cook–Austral Islands. We observe 4He/3He ratios ranging from 56 000 to 141 000, suggesting the involvement of mantle reservoirs both more and less radiogenic than the mantle source for mid-ocean ridge basalts (MORBs). In addition, we find that the neon isotopic compositions of HIMU lavas extend from the MORB range to compositions less nucleogenic than MORBs. The Cook-Austral HIMU He–Ne isotopic compositions, along with Sr, Nd, Pb, and Os isotopic compositions, indicate that in addition to recycled crust, a relatively undegassed mantle end-member (e.g., FOZO) is involved in the genesis of these basalts. The association of relatively undegassed mantle material with recycled crust provides an explanation for the close geographical association between HIMU lavas and EM (enriched mantle)-type lavas from this island chain: EM-type signatures represent a higher mixing proportion of relatively undegassed mantle material. Mixing between recycled material and relatively undegassed mantle material may be a natural result of entrainment processes and convective stirring in deep mantle.  相似文献   

16.
A detailed analysis of the VLF/ELF wave data obtained during a whistler campaign under All India Coordinated Program of Ionosphere Thermosphere Studies (AICPITS) at our low latitude Indian ground station Jammu (geomag. lat. = 22° 26′ N, L = 1.17) has yielded two types of unusual and unique whistler-triggered VLF/ELF emissions. These include (1) whistler-triggered hook emissions and (2) whistler-triggered long enduring discrete chorus riser emissions in VLF/ELF frequency range during night time. Such types of whistler-triggered emissions have not been reported earlier from any of the ground observations at low latitudes. In the present study, the observed characteristics of these emissions are described and interpreted. Dispersion analysis of these emissions show that the whistlers as well as emissions have propagated along a higher geomagnetic field line path with L-values lying ∼L = 4, suggesting that these triggered emissions are to be regarded as mid-latitude emissions. These waves could have propagated along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal (PL) mode. The measured intensity of the triggered emissions is almost equal to that of the source waves and does not vary throughout the period of observation on that day. It is speculated that these emissions may have been generated through a process of resonant interaction of the whistler waves with energetic electrons. Parameters related to this interaction are computed for different values of L and wave amplitude. The proposed mechanism explains some aspects of the dynamic spectra.  相似文献   

17.
《Continental Shelf Research》2006,26(17-18):2029-2049
A field experiment was carried out in Massachusetts Bay in August 1998 to assess the role of large-amplitude internal waves (LIWs) in resuspending bottom sediments. The field experiment consisted of a four-element moored array extending from just west of Stellwagen Bank (90-m water depth) across Stellwagen Basin (85- and 50-m water depth) to the coast (24-m water depth). The LIWs were observed in packets of 5–10 waves, had periods of 5–10 min and wavelengths of 200–400 m, and caused downward excursions of the thermocline of as much as 30 m. At the 85-m site, the current measured 1 m above bottom (mab) typically increased from near 0 to 0.2 m/s offshore in a few minutes upon arrival of the LIWs. At the 50-m site, the near-bottom offshore flow measured 6 mab increased from about 0.1 to 0.4–0.6 m/s upon arrival of the LIWs and remained offshore in the bottom layer for 1–2 h. The near-bottom currents associated with the LIWs, in concert with the tidal currents, were directed offshore and sufficient to resuspend the bottom sediments at both the 50- and 85-m sites. When LIWs are present, they may resuspend sediments for as long as 5 hours each tidal cycle as they travel westward across Stellwagen Basin. At 85-m water depth, resuspension associated with LIWs is estimated to occur for about 0.4 days each summer, about the same amount of time as caused by surface waves.  相似文献   

18.
Experimental measurements of fracture-induced seismic waves velocity variations at frequencies ~ 1 kHz, ~ 40 kHz and ~ 1 MHz were performed directly in the field at the rocky outcrop and in the laboratory on specific rock samples collected from the outcrops. The peridotite–lherzolite outcrop appeared macroscopically uniform and contained three systems of visible parallel sub-vertical fractures. This rock has substantial bulk density and higher than average value of seismic wave velocity. The presence of fracture systems gives rise to its velocity anisotropy. The seismic waves passing through the rock fractures are subject to velocity dispersion and frequency dependent attenuation. Our data, obtained from field and laboratory measurements, were compared with theoretical model predictions. In this model we successfully used displacement discontinuity approach. For the velocity dispersion evaluation we used multi-frequency measurements. The a priori observation of orientations and densities of fracture sets allowed evaluation of their stiffness. Our approach revealed that the first arrivals of seismic waves can be used for evaluation of P-wave group velocities, the specific case, in which we expect anomalous velocity dispersion. Our observations contribute to the issue of up-scaling of well-log derived velocities in fractured rock to the scale of standard seismic exploration frequencies.  相似文献   

19.
Regular measurements of the atmospheric electric field made at Vostok Station (φ=78.45°S; λ=106.87°E, elevation 3500 m) in Antarctica demonstrate that extremely intense electric fields (1000–5000 V/m) can be observed during snow storms. Usually the measured value of the atmospheric electric field at Vostok is about 100–250 V/m during periods with “fair weather” conditions. Actual relation between near-surface electric fields and ionospheric electric fields remain to be a controversial problem. Some people claimed that these intense electric fields produced by snowstorms or appearing before strong earthquakes can re-distribute electric potential in the ionosphere at the heights up to 300 km. We investigated interrelation between the atmospheric and ionospheric electric fields by both experimental and theoretical methods. Our conclusion is that increased near-surface atmospheric electric fields do not contribute notably to distribution of ionospheric electric potential.  相似文献   

20.
During the summer of 2005, transient luminous events were optically imaged from the French Pyrénées as part of the EuroSprite campaign. Simultaneously, extremely low frequency (ELF: 3–3000 Hz) and broadband very low frequency (VLF: 3–30 kHz) data were recorded continuously at two separate receivers in Israel, located about 3300 km from the area of the parent lightning discharges responsible for the generation of sprites. Additionally, narrowband VLF data were collected in Crete, at about 2300 km away from the region of sprites.The motivation for the present study was to identify the signature of the sprite-producing lightning discharges in the ELF and VLF electromagnetic frequency bands, to qualify and compare their parameters, and to study the influence of the thunderstorm-activated region on its overlaying ionosphere. For the 15 sprites analyzed, their causative positive cloud-to-ground (+CG) discharges had peak current intensities between +8 and +130 kA whereas their charge moment changes (CMC) ranged from 500 to 3500 C km. Furthermore, the peak current reported by the Météorage lightning network are well correlated with the amplitudes of the VLF bursts, while showing poor correlation with the CMCs which were estimated using ELF methods.Additionally, more than one +CG was associated with six of the sprites, implying that lightning discharges that produce sprites can sometimes have multiple ground connections separated in time and space. Finally, for a significant number of events (33%) an ELF transient was not associated with sprite occurrence, suggesting that long continuing current of tens of ms may not always be a necessary condition for sprite production, a finding which influences the estimation of the global sprite rate based on Schumann resonance (SR) measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号