首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The prediction of solar activity strength for solar cycles 24 and 25 is made on the basis of extrapolation of sunspot number spectral components. Monthly sunspot number data during the 1850–2007 interval (solar cycles 9–23) are decomposed into several levels and searched for periodicities by iterative regression in each level. For solar cycle 24, the peak is predicted in November 2013 with a sunspot number of 113.3. The cycle is expected to be weak, with a length of 133 mo (months) or 11.1 yr. The sunspot number maximum in cycle 25 is predicted to occur in April 2023 with a sunspot number 132.1 and a solar cycle length of 118 mo or 9.8 yr. Thus, solar cycle 24 is predicted to have an intensity 23% lower than cycle 23, and cycle 25 will be 5% lower than cycle 23.  相似文献   

2.
We examine joint effects of the solar activity and phase of the quasi-biennial oscillation (QBO) on modes of low-frequency variability of tropospheric circulation in the Northern Hemisphere in winter. The winter months (December–March) are stratified by the solar activity into two (below/above median) classes, and each of these classes is subdivided by the QBO phase (west or east). The variability modes are determined by rotated principal component analysis of 500 hPa heights separately in each class of solar activity and QBO phase. Detected are all the modes known to exist in the Northern Hemisphere. The solar activity and QBO jointly affect the shapes, spatial extent, and intensity of the modes; the QBO effects are, however, generally weaker than those of solar activity. For both solar maxima and minima, there is a tendency to the east/west phase of QBO to be accompanied by a lower/higher activity of zonally oriented modes and increased meridionality/zonality of circulation. This means that typical characteristics of circulation under solar minima, including a more meridional appearance of the modes and less activity of zonal modes, are strengthened during QBO-E; on the other hand, circulation characteristics typical of solar maxima, such as enhanced zonality of the modes and more active zonal modes, are more pronounced during QBO-W. Furthermore, the zonal modes in the Euro-Atlantic and Asian sectors (North Atlantic Oscillation, East Atlantic pattern, and North Asian pattern) shift southwards in QBO-E, the shift being stronger in solar maxima.  相似文献   

3.
Summary A model of radial drifting and oscillating dipoles to represent geomagnetic palaeosecular variations, which showed to be appropriate for the Southern Hemisphere, is evaluated for the Northern Hemisphere. After a new fitting of some involved parameters, its theoretical results are compared with the palaeomagnetic data of Lake de Bouchet (France) and the Black Sea. A time lag between the declination and inclination profiles is observed in both cases. A good cross-correlation coefficient is obtained for the declination and inclination data.Presented at 2nd conference on New Trends in Geomagnetism, Castle of Bechyn, Czechoslovakia, September 24–29, 1990.  相似文献   

4.
This paper contains correlations between the NCEP/NCAR global stratospheric data below 10 hPa and the 11-year solar cycle. In the north summer the correlations between the stratospheric geopotential heights and the 11-year solar cycle are strong and positive on the Northern Hemisphere and as far south as 30°S, whereas they are weak in the north winter all over the globe. If the global stratospheric heights and temperatures in the north winter are stratified according to the phase of the QBO in the lower stratosphere, their correlations with the solar cycle are large and positive in the Arctic in the west years of the QBO but insignificantly small over the rest of the earth, as far as the South Pole. In the east years, however, the arctic correlations with the solar cycle are negative, but to the south they are positive and strong in the tropical and temperate regions of both hemispheres, similar to the correlations with the full series of stratospheric data in the other seasons. The influence of the solar cycle in the Arctic is stronger in the latter half of the winter. The global difference, in the northern winter, in the sign and strength of the correlations between the stratospheric heights and temperatures and the solar cycle in east and west years of the QBO can be ascribed to the fact that the dominant stratospheric teleconnection and the solar influence work in the same direction in the east years, but oppose each other in the west years.  相似文献   

5.
The effect of solar/geomagnetic activity and QBO phase on the distribution of winds prevailing in the winter periods (January–March) in the Northern Hemisphere at the altitude of 850 mb was studied. Analysis has shown that the zonal flow over the North Atlantic under high geomagnetic activity intensifies and under low solar/geomagnetic activity weakens. Flow deviations, associated with geomagnetic activity, are more marked under the QBO-east phase, and flow deviations, associated with solar activity, are more marked under the QBO-west phase. The results reported by Venne and Dartt (1990) concerning the wind distribution in the winter (February–March) Northern Hemisphere under high and low solar activity and a QBO-west phase, have been confirmed, and supplemented with wind distributions under high and low geomagnetic activity.  相似文献   

6.
Based on the known forecast of solar cycle 25 amplitude (Rz max ≈ 50), the first assessments of the shape and amplitude of this cycle in the index of solar activity F10.7 (the magnitude of solar radio flux at the 10.7 cm wavelength) are given. It has been found that (F10.7)max ≈ 115, which means that it is the lowest solar cycle ever encountered in the history of regular ionospheric measurements. For this reason, many ionospheric parameters for cycle 25, including the F2-layer peak height and critical frequency (hmF2 and foF2), will be extremely low. For example, at middle latitudes, typical foF2 values will not exceed 8–10 MHz, which makes ionospheric heating ineffective in the area of upper hybrid resonance at frequencies higher than 10 MHz. The density of the atmosphere will also be extremely low, which significantly extends the lifetime of low-orbit satellites. The probability of F-spread will be increased, especially during night hours.  相似文献   

7.
北半球大气遥相关型与区域尺度大气扰动   总被引:2,自引:2,他引:2       下载免费PDF全文
北极涛动(AO)、北大西洋涛动(NAO)和太平洋—北美型(PNA)等北半球大气遥相关型,可以用大气位势高度的物理分解扰动分量解释.结果发现,AO反映的是北极地区行星尺度纬圈平均扰动分量的变化,PNA与持续性天气尺度扰动分量相联系,NAO是行星尺度纬圈平均扰动与天气尺度扰动共同作用的结果.对行星尺度纬圈平均扰动分量和天气尺度扰动分量用旋转经验正交函数(REOF)展开,不但可以证实人们已经命名的区域性大气涛动,还新发现了北极地区的两对偶极涛动、欧亚涛动(EAO)和"大西洋—欧亚型"(AEA)波列.这些涛动连接了相邻地区的异常天气和异常气候.  相似文献   

8.
9.
Based on modern observations, historical proxy data, and climate model simulations, this paper provides a comprehensive overview of the past, present and future evolution characteristics of the Atlantic Meridional Overturning Circulation(AMOC), as well as its impact on the surface air temperature(SAT) at regional and hemispherical scales. The reconstruction results based on the proxy data indicate that the AMOC has weakened since the late 19th century and experienced overall weakening throughout...  相似文献   

10.
Methods were developed for carrying out spherical harmonical analysis of disturbed diurnal variations over a limited territory at high latitudes of the Northern Hemisphere. The ratios ?n|staggered||m of the external and internal parts of the magnetic potential were evaluated for spherical harmonics 4 ? n ? 12. Different from generally accepted ?n|staggered||m values for Sq variations (2 ÷ 3), they proved to be considerably higher and attained 10 for n ? 8. This result testifies to a small contribution of induced fields into disturbed diurnal variations observed at high latitudes.A deep sounding was carried out from spherical analysis data. It is shown that the mean distribution of the electrical conductivity at high latitudes σ(r) is the same as the global mean distribution for the whole Earth and that, consequently, it may serve as a reference for local soundings.  相似文献   

11.
Wang  Jianglin  Yang  Bao  Zheng  Jingyun  Zhang  Xuezhen  Wang  Zhiyuan  Fang  Miao  Shi  Feng  Liu  Jingjing 《中国科学:地球科学(英文版)》2020,63(8):1126-1143
The temperature variability over multidecadal and longer timescales(e.g., the cold epochs in the late 15 th, 17 th, and early 19 th centuries) is significant and dominant in the millennium-long, large-scale reconstructions and model simulations;however, their temporal patterns in the reconstructed and simulated temperature series are not well understood and require a detailed assessment and comparison. Here, we compare the reconstructed and simulated temperature series for the Northern Hemisphere(NH) at multidecadal and longer-term timescales(30 years) by evaluating their covariance, climate sensitivity and amplitude of temperature changes. We found that covariances between different reconstructions or between reconstructions and simulations are generally high for the whole period of 850–1999 CE, due to their similar long-term temporal patterns. However,covariances between different reconstructions or between reconstructions and simulations steadily decline as time series extends further back in time, becoming particularly small during Medieval times. This is related to the large uncetainties in the reconstructions caused by the decreased number of proxy records and sample duplication during the pre-instrumental periods.Reconstructions based solely on tree-ring data show higher skill than multiproxy reconstructions in capturing the amplitude of volcanic cooling simulated by models. Meanwhile, climate models have a shorter recovery(i.e., lag) in response to the cooling caused by volcanic eruptions and solar activity minima, implying the lack of some important feedback mechanisms between external forcing and internal climate processes in climate models. Amplitudes of temperature variations in the latest published tree-ring reconstructions are comparable to those of the multiproxy reconstructions. We found that the temperature difference between the Medieval Climate Anomaly(950–1250 CE) and the Little Ice Age(1450–1850 CE) is generally larger in proxybased reconstructions than in model simulations, but the reason is unclear.  相似文献   

12.
The basic statistical properties of solar cycles, including the Gnevyshev-Ol?? rule, the Waldmeier effect, and the amplitude-period effect, are tested using data on the number of sunspot groups for 1700?C1996, considering the hypothesis about a missing solar cycle in the late 18th century. The results show that the division of the long cycle of 1784?C1800 into two short cycles??1784?C1793 and 1793?C1800??alters significantly the pattern of the solar cycles. The Gnevyshev-Ol?? cycle intensity effect becomes stronger, and almost all other statistical effects grow weaker. This change is due to the fact that the short and weak cycle of 1793?C1800 is statistically very unusual and its features are very different from those of other solar cycles.  相似文献   

13.
This review paper for STIB (Stratosphere-Troposphere Interaction and the Biosphere; a proposed core project for IGBP) summarizes several features of a recently discovered 10–12 year oscillation in the atmosphere on the Northern Hemisphere. The oscillation is especially strong in the stratosphere during the warmer half of the year, but it is evident in the stratosphere and troposphere also in winter if the data are grouped according to the phase of the Quasi-Biennial Oscillation of the wind in the equatorial stratosphere. During the 40 years with data available to describe the oscillation it was phase locked with the 11-year solar cycle.Affiliate Scientist, NCAR.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
15.
We have used a global time-dependent magnetohydrodynamic (MHD) simulation of the magnetosphere and particle tracing calculations to determine the access of solar wind ions to the magnetosphere and the access of ionospheric O+ ions to the storm-time near-Earth plasma sheet and ring current during the September 24–25, 1998 magnetic storm. We found that both sources have access to the plasma sheet and ring current throughout the initial phase of the storm. Notably, the dawnside magnetosphere is magnetically open to the solar wind, allowing solar wind H+ ions direct access to the near-Earth plasma sheet and ring current. The supply of O+ ions from the dayside cusp to the plasma sheet varies because of changes in the solar wind dynamic pressure and in the interplanetary magnetic field (IMF). Most significantly, ionospheric O+ from the dayside cusp loses access to the plasma sheet and ring current soon after the southward turning of the IMF, but recovers after the reconfiguration of the magnetosphere following the passage of the magnetic cloud. On average, during the first 3 h after the sudden storm commencement (SSC), the number density of solar wind H+ ions is a factor of 2–5 larger than the number density of ionospheric O+ ions in the plasma sheet and ring current. However, by 04:00 UT, ∼4 h after the SSC, O+ becomes the dominant species in the ring current and carries more energy density than H+ ions in both the plasma sheet and ring current.  相似文献   

16.
To improve results in monthly rainfall prediction, a parametrization of precipitation has been developed. The thermodynamic energy equation used in the Adem thermodynamic model (ATM) and the Clausius and Clapeyron equation, were used to obtain a linear parametrization of the precipitation anomalies as a function of the surface temperature and the 700 mb temperature anomalies. The observed rainfall in Mexico over 36 months, from January 1981 to December 1983, was compared with the results obtained of the heat released by condensation, which is proportional to precipitation, using our theoretical formula, and those obtained using a statistical formula, which was derived for the ATM using 12 years of hemispheric real data. The verification using our formula in Mexico, showed better results than the one using the statistical formula.  相似文献   

17.
With their high resolution and reliability, tree rings play a very important role in global climate change study. The long tree-ring chronology is considered as one of the most important information sources to study the climatic change in the past several thousands years. In recent years, the tree-ring researches in China have made great progress, and the temperature and precipita- tion in some areas were reconstructed[1-20] which on- tributed to the global change studies in China. Due to the…  相似文献   

18.
Variations in the Earth's climate have had considerable impact on society sectors such as energy, agriculture, fisheries, water resources, and environmental quality. This natural climate variability must be documented and understood in order to assess its potential impacts, its predictability and relationships with human-induced changes. Understanding the mechanisms responsible for natural variability proceeds through a strategy based on the use of a hierarchy of climate models and careful data analysis. In this paper, we examine primarily climate fluctuations on interannual-to-decadal time scales and their climate signature in terms of precipitation and temperature. First, space and time characteristics of two of the major variability modes, the Southern Oscillation (and its associated teleconnection patterns) and the North Atlantic Oscillation, are documented with a focus onto the midlatitudes of the Northern Hemisphere. Then, the current hypothesis regarding the nature of these modes (forced, coupled or internal) are reviewed based on both simulation results and statistical data analyses. Next, we address the potential predictability of seasonal surface temperature and land precipitation using an ensemble of atmospheric model simulations forced by observed sea surface temperatures. Finally, we review the relationships between the atmospheric variability modes and the recent low-frequency trends and suggest a possible influence of anthropogenic effects on these low-frequency variations.  相似文献   

19.
20.
The changes of pressure and temperature fields in the winter lower troposphere observed in association with changes in solar and/or geomagnetic activity are compared. It is shown that the fact whether it was solar or geomagnetic activity was not so important as whether the levels of the two activities were high or low. The differences between the effects of solar/geomagnetic activity, however, are revealed, the pressure and temperature data being stratified according to the QBO phase. The relationship obtained are discussed from the viewpoint of mechanisms resting upon both the planetary wave propagation and the changes of atmospheric air currents in the global electric circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号