首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
侍文  陈石  韩建成  李红蕾  卢红艳 《地震》2021,41(1):1-12
研究中国大陆强震区岩石圈力学特性对理解该区强震孕育环境及发生机理具有重要意义.岩石圈有效弹性厚度(Te)及初始载荷比(F)与大陆岩石圈力学特征紧密相关.本文利用导纳和相关函数联合反演方法以及贝叶斯最优参数估计方法,基于全球最新的WGM2012重力异常数据、ETOP01地形数据和CRUST1.0模型的Moho面深度数据,...  相似文献   

2.
利用我国气象台站观测资料和再分析格点数据,诊断研究了前期春季(4-5月份)北大西洋涛动(North Atlantic Oscillation,NAO)和南半球环状模(Southern Annular Mode,SAM)在不同位相配置下对我国南方夏季降水异常变化的协同影响作用.分析结果表明,在剔除ENSO最强信号影响后,我国南方夏季降水异常分布显著地依赖于前期春季两个较为独立的年际变率主模态(NAO和SAM)位相的不同配置,即降水异常型主要表现为两个因子单独作用的叠加效果,当前春SAM正位相偏强而NAO负位相偏强时,二者的影响呈现协同正效应,我国南方夏季(6-7月份)降水表现为全区正异常,特别在长江中下游及其以南附近地区最为显著;反之,当前春SAM呈偏强的负位相而NAO偏强的正位相配置时,二者的影响呈现协同负效应,对应我国夏季长江中下游地区降水表现为显著负异常.对其可能的影响机理研究表明,在SAM与NAO位相相反情况下,二者均会通过海气相互作用过程影响到热带大西洋北部海温的异常变化,进而形成协同作用,增强北大西洋海温三极子模态异常信号,从而通过欧亚大陆的遥相关波列对东亚夏季风和我国南方降水产生显著影响.相比之下,当SAM与NAO同位相时,可能表现为抵消效应,不利于北大西洋海温三极子发展,从而削弱对我国南方夏季降水的影响,此方面还有待进一步研究.  相似文献   

3.
新墨西哥州SOR中间层钠层结构的季节和夜间变化   总被引:4,自引:1,他引:4       下载免费PDF全文
利用1998年1月至2000年5月美国新墨西哥州Starfire Optic Range (SOR:35°N,106.5°W)钠风场、温度激光雷达共46个观测夜的数据,分析大气中间层钠层结构的季节变化特征. 结果表明,钠层丰度变化显示出很强的年振荡现象,其平均值为5.06×109cm-2,最大值出现在11月份,最小值出现在6月和7月份. 钠层均方根宽度的平均值为4.30km,中心高度的平均值为91.60km. 均方根宽度和中心高度变化显示出较明显的半年振荡特征. 年平均钠层夜间变化显示出潮汐的影响,丰度夜间变化在午夜前最小,日出前达到最大. 白天光离化作用和夜间复合过程,与潮汐动力学一起,导致钠层丰度发生较大的夜间变化.  相似文献   

4.
A detailed statistical analysis applied to the seismicity of Italy and surrounding areas allows us to identify some correlations between several statistical parameters and the thickness and the elastic parameters of the lithospheric part of the mantle, the lid. In particular, the intensity of the flow of seismic events, deprived of aftershocks, shows concentrations in relation to large gradients in the lithospheric thickness, due to abrupt variations of the lid thickness. When this variation is not very large the intensity of flow of seismic events is smaller than on the average, but in these areas (e.g., the Calabrian Arc) the strongest shocks tend to occur. The average depth of crustal shocks tends to be very shallow in relation to the thin and soft (low shear-wave velocities) lid. The positive influence, probably reflecting the thermal state in the lithosphere, is very large in relation to the thin and soft lid and where strong gradients in lid thickness are observed, and is small in relation to thick and hard lid (high shear-wave velocities). From the observed correlation between seismicity properties and lid characteristics, it may be concluded that aseismic slip below the Moho might be a key seismogenetic process.  相似文献   

5.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

6.
Abstract

The linear stability analysis of Hathaway, Gilman and Toomre (1979) (hereafter referred to as Paper I) is repeated for Boussinesq fluids with viscous and thermal diffusion. As in Paper I the fluid is confined between plane parallel boundaries and the rotation vector is oblique to gravity. This tilted rotation vector introduces a preference for roll-like disturbances whose axes are oriented north-south; the preference is particularly strong in the equatorial region. The presence of a latitudinal temperature gradient produces a thermal wind shear which favors axisymmetric convective rolls if the gradient exceeds some critical value. For vanishingly small diffusivities the value of this transition temperature gradient approaches the inviscid value found in Paper I. For larger diffusivities larger gradients are required particularly in the high latitudes. These results are largely independent of the Prandtl number. Diffusion tends to stabilize the large wavenumber rolls with the result that a unique wavenumber can be found at which the growth rate is maximized. These preferred rolls have widths comparable to the depth of the layer and tend to be broader near the equator. The axisymmetric rolls are similar in many respects to the cloud bands on Jupiter provided they extend to a depth of about 15,000 km.  相似文献   

7.
This paper presents a mechanism to explain the observed formation of a surface temperature minimum at tidal fronts in shelf seas. Tidal fronts mark the boundary between water which is kept vertically mixed by fast tidal currents and water which stratifies in summer. The fronts are associated with strong horizontal surface gradients of several water properties, including temperature. In the early studies of tidal fronts, a minimum in surface temperature was occasionally observed between the cool surface waters on the mixed side of the front and the warm surface waters on the stratified side. It was suggested that this was caused by upwelling of deep water at the front. In this paper we describe an alternative and simpler explanation based on the local balance of heating and stirring. The net heat flux into the sea in spring and early summer is greater on the mixed side of the front than on the stratified side. This happens because the heat loss mechanism is dependent on sea surface temperature and stratified waters, having a higher surface temperature, lose more heat. The stratified water near the front therefore has lower heat content (and lower depth-mean temperature) than the mixed water. If some of the stratified water becomes mixed, for example with increased tidal stirring at spring tides, a zone of minimum surface temperature will be formed at the front. A numerical model for the study of this mechanism shows that the temperature minimum at tidal fronts can be explained by the process described above. The minimum appears most clearly at spring tides, but can still be present in a weaker form at neap tides. A further prediction of the model is an increase of the horizontal temperature gradient at spring tides, which is in agreement with observations. An unexpected outcome of the modelling is the prediction of the formation of a marked sea surface temperature minimum, not yet observed, occurring in the autumn and located at the summer position of the tidal front.  相似文献   

8.
The Allende meteorite has been examined with a view to applying thermoluminescence (TL) to the study of a meteorite's passage through the atmosphere. At least three kinds of TL-bearing minerals are present. A strong peak at 140°C is due to forsterite, and one at 200°C is probably caused by cordierite. By far the most intense TL comes from an alteration product associated with gehlenite.In the 4-cm diameter meteorite examined the 200°C TL varied in intensity across the stone, showing it to be produced by fragmentation. Temperature gradients induced by atmospheric heating can also be derived, and indicate the orientation of the meteorite. Together with fusion crust measurements these results enable the final phase of the meteorite's passage through the atmosphere to be delineated.  相似文献   

9.
Geomorphological process research demands quantitative information on erosion and deposition event timing and magnitude, in relation to fluctuations in the suspected driving forces. This paper establishes a new measurement principle – thermal consonance timing (TCT) – which delivers clearer, more continuous and quantitative information on erosion and deposition event magnitude, timing and frequency, to assist understanding of the controlling mechanisms. TCT is based on monitoring the switch from characteristically strong temperature gradients in sediment, to weaker gradients in air or water, which reveals the moment of erosion. The paper (1) derives the TCT principle from soil micrometeorological theory; (2) illustrates initial concept operationalization for field and laboratory use; (3) presents experimental data for simple soil erosion simulations; and (4) discusses initial application of TCT and perifluvial micrometeorology principles in the delivery of timing solutions for two bank erosion events on the River Wharfe, UK, in relation to the hydrograph. River bank thermal regimes respond, as soil temperature and energy balance theory predicts, with strong horizontal thermal gradients (often >1 K cm?1 over 6·8 cm). TCT fixed the timing of two erosion events, the first during inundation, the second 19 h after the discharge peak and 13 h after re‐emergence from the flow. This provides rare confirmation of delayed bank retreat, quantifies the time‐lag involved, and suggests mass failure processes rather than fluid entrainment. Erosion events can be virtually instantaneous, implying ‘catastrophic retreat’ rather than ‘progressive entrainment’. Considerable potential exists to employ TCT approaches for: validating process models in several geomorphological contexts; assisting process identification and improving discrimination of competing hypotheses of process dominance through high‐resolution, simultaneous analysis of erosion and deposition events and driving forces; defining shifting erodibility and erosion thresholds; refining dynamic linkages in event‐based sediment budget investigations; and deriving closer approximations to ‘true’ erosion and deposition rates, especially in self‐concealing scour‐and‐fill systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The liquid being sampled from a draining reservoir of density-stratified fluid, such as an erupting zoned magma chamber, is derived from a relatively thin withdrawal layer adjacent to the level of the chamber outlet. This is a consequence of the buoyancy force associated with the density gradient inhibiting vertical motion so that the opportunity for widely separated density levels (compositions) to be tapped and mingled syneruptively is suppressed.Density gradients in zoned chambers of 0.02 – 10 kgm−3/m are suggested by data from caldera-forming eruptions. Viscosity gradients can be specified for a given density gradient using calculated relationships between viscosity and density. Published compositional and geothermometric data are used to show that zoned high-silica rhyolites decrease in viscosity upward because of the roofward concentration of dissolved volatiles. Other zoned calc-alkaline magmas increase in viscosity upward because of decreasing temperature and concentration of network modifying cations.A method is developed of calculating the scale of the withdrawal layer thickness, δ, for given kinematic viscosity, eruption rate, and density and viscosity gradients. The method is systematized by the identification of specific flow regimes describing the action of either viscous or inertial forces in balancing the buoyancy force. Thin withdrawal layers are favoured by small eruption rates, small viscosity, and by large density gradients. For particularly steep density gradients, however, the consequently large viscosity gradient plays a role in determining the withdrawal layer thickness. Withdrawal layer thicknesses of the order of 100 m are calculated for typical pyroclastic eruptions of zoned acid magma, and are mostly independent of the viscosity gradient.The vertical scale at which a zoned chamber is instantaneously being tapped during an eruption is equal to the scale of the withdrawal layer thickness. Thus, an eruption that causes collapse of a caldera block through a height that is less than that of the withdrawal layer scale will produce magmas from deeper levels than that to which the chamber roof sinks. In this case the eruption is said to oversample the chamber with respect to the amount of caldera collapse and will produce an essentially constant range of compositions throughout. Alternatively, if the caldera collapse distance is much greater than δ then the selective withdrawal process leads to successive levels of the chamber being “skimmed off” (on a scale δ). This allows the compositional stratigraphy of the chamber to be inverted by the eruptive process, with little opportunity for syneruptive mixing between diverse magma compositions. The geological record shows that most calderas associated with zoned magmas collapsed through vertical distances in excess of 100 m (the characteristic estimate for δ) and, in agreement with our modelling of selective withdrawal, show smooth correlations between composition, or temperature, and the order of eruption.  相似文献   

11.
The effects of variations in crustal and basin thicknesses on the efficiency of Lg propagation in Central Asia are investigated by comparing the predictions of ray theoretical modeling of Lg as multiple, critically reflected, SmS rays with observations at the KNET, CNET, and ILPA arrays. Ray modeling predicts that strong spatial gradients in crustal thickness within 10 to 50 km of either the source or receiver can affect Lg efficiency over paths exceeding 500 km. Variations in the efficiency of Lg propagation to KNET, including instances of strong variations across the aperture of the array, are consistent with predicted blockage of SmS by high slopes of Moho topography associated with the Hindu Kush and Pamir mountains. At CNET and ILPA the blocking effects of Moho slopes associated with the Caucausus and Zagros mountain belts and Black and Caspian Seas are accentuated by the effects of thick basins. Thick basins (greater than 2000 m) are found to have large effects on the efficiency of Lg propagation from shallow (1 km) crustal sources, blocking either a portion or all of the Lg phase along paths crossing these basins. The basin effects are strongly sensitive to source depth, nearly vanishing for sources 15 km and deeper.  相似文献   

12.
In 1983, Lay and Helmberger [Geophys. J. R. Astron. Soc. 75 (1983) 799–837] reported the detection of a precursor to the seismic phase ScS. They attributed this precursor to a sharp seismic discontinuity located several hundred kilometers above the core–mantle boundary. Such a lowermost mantle discontinuity implies the existence of a sharp phase change or a chemical boundary. Precursors to ScS and, less frequently, PcP have since been observed in numerous locations, but are not a global phenomenon. Frequently, PcP precursors are weak or absent when ScS precursors are observed in the same location, and vice versa. There can be significant variations in the amplitude and arrival time of the precursor relative to the main phase. The presence or absence of these precursors has led to speculations about the nature of the lowermost mantle. Here we demonstrate that ScS or PcP precursors may be produced by gradients in seismic wave speed associated with large-scale lowermost mantle heterogeneity. Rather than a phase or chemical boundary with substantial topography, such gradients require lateral variations in temperature and, close to the core–mantle boundary, composition.  相似文献   

13.
Fine measurements have been conducted to temperatures and their gradients of six wells of the Jinsha River Groundwater Observational Network.The results show that the influence depths of sun radiation heat are 50m to 125m,average temperature gradients in the wells range from 0.11 to 2.81℃/hm and most are 1~2℃/hm,and the temperature gradients on varied depth sections of one well are highly changeable.Lithology of strata and their integrity,particularly high-angle crashed fault zones,have imposed major effects on the influence depths of sun radiation heat and temperature gradients of the wells.The micro dynamic characteristics of water temperature,such as coseismic effects,tidal effects and anomalies of the wells prior to earthquakes,probably depend,to a large degree,on the temperature gradients of the depths at which the water temperature sensors are settled.  相似文献   

14.
中国大陆垂直形变速率梯度与强震危险区   总被引:7,自引:1,他引:7       下载免费PDF全文
张郢珍  张立人 《地震地质》1992,14(3):237-244
应用确定形变速率梯度值的方法,探讨了速率梯度与构造活动、地震活动的关系。利用《中国现代地壳垂直形变速度图》经数字化处理后,给出了中国现代垂直形变速率水平梯度等值线图,将高形变速率梯度区与强震发生地点进行了对比,并指示出了未来10~20a的内强震潜在危险区  相似文献   

15.
It is well known that ionospheric perturbations are characterised by strong horizontal gradients and rapid changes of the ionisation. Thus, space weather induced severe ionosphere perturbations can cause serious technological problems in Global Navigation Satellite Systems (GNSS) such as GPS. During the severe ionosphere storm period of 29–31 October 2003, reported were several significant malfunctions due to the adverse effects of the ionosphere perturbations such as interruption of the WAAS service and degradation of mid-latitudes GPS reference services. To properly warn service users of such effects, a quick evaluation of the current signal propagation conditions expressed in a suitable ionospheric perturbation index would be of great benefit. Preliminary results of a comparative study of ionospheric gradients including vertical sounding and Total Electron Content (TEC) data are presented. Strong enhancements of latitudinal gradients and temporal changes of the ionisation are observed over Europe during the 29–30 October storm period. The potential use of spatial gradients and rate of change of foF2 and TEC characterising the actual perturbation degree of the ionosphere is discussed. It has been found that perturbation induced spatial gradients of TEC and foF2 strongly enhance during the ionospheric storm on 29 October over the Central European region in particular in North–South direction exceeding the gradients in East–West direction by a factor of 2.  相似文献   

16.
The mean temperature gradient maps from surface down to top basement and down to base Tertiary correspond to the boundaries and internal features of the basin. The Landshut-Neuötting High in Eastern Bavaria is an area of relatively high temperature. The German Eastmolasse part west of this high shows extremely low temperature gradients. In the German Westmolasse area, in addition to a normal Tertiary gradient of about 25°C/km which is assumed to be the Tertiary paleogradient a steep near-surface gradient down to 500–800 m depth is deduced from the present interpretation of the measurements so that due to the southward increasing sediment thickness of the Tertiary in the flat northern margin of the basin there results a higher Tertiary mean gradient than in the south. The intramesozoic gradients are somewhat irregular, but generally tend to increase from north to south. Thus far they compensate to a certain degree the regional trend of the Tertiary gradients so that the mean gradients from surface down to top basement show smaller differences than the mean Tertiary gradients. A slight increase of the Mesozoic temperature gradients as compared with the Tertiary gradients is interpreted by both the lower heat conductivity of the consolidated and carbonate-rich Mesozoic and the northward directed water flow in the Malm karst transporting heat from the deeper southern part of the basin within the Malm karst northward at least since Pliocene time.  相似文献   

17.
The variability of stratospheric planetary waves and their possible connection with the 11-year solar cycle forcing have been investigated using annual-mean temperatures for the period of 1958–2001 derived from two reanalysis data sets. The significant planetary waves (wavenumbers 1–3) can be identified in the northern mid-high latitudes (55–75°N) in the stratosphere using this data. Comparisons with satellite-retrieved products from the Microwave Sounding Unit (MSU) confirm the significant planetary wave variability seen in the reanalyses. A planetary wave amplitude index (PWAI) is defined to indicate the strength of the stratospheric planetary waves. The PWAI is derived from Fourier analysis of the temperature field for wavenumbers 1–3 and averaged over 55–75°N latitude and the 70–20 hPa layers. The results include two meaningful inter-annual oscillations (2- and 8-year) and one decadal trend (16-year) that was derived from wavelet analysis. The stratospheric temperature structure of the wave amplitudes appear associated with the Arctic Oscillation (AO) which explicitly changed with the PWAI. The temperature gradients between the polar and mid-high latitudes show opposite tendencies between the top-10 strong and weak wave regimes.The variation of the planetary wave amplitude appears closely related to the solar forcing during the recent four solar cycles (20–23). The peak of the 2-year oscillation occurs synchronously with solar minimum, and is consistent with the negative correlation between the PWAI and the observed solar UV irradiance. The UV changes between the maxima and minima of the 11-year solar cycle impact the temperature structure in the middle-lower stratosphere in the mid-high latitudes and hence influence the planetary waves. During solar maximum, the dominant influence appears to be exerted through changes in static stability, leading to a reduction in planetary wave amplitude. During solar minimum, the dominant influence appears to be exerted through changes in the meridional temperature gradient and vertical wind shear, leading to an enhancement of planetary wave amplitude.  相似文献   

18.
Results of studying the behavior of the vectors of gradients and phase velocities of ULF geomagnetic disturbances (F < 1 Hz) in the Japan seismic zone are presented. The gradient and phase velocity vectors along the Earth’s surface were determined using data of the group of three high-sensitivity three-component magnetovariation stations (MVC-3DS) located at triangle vertices at a small (~5 km) distance from one another (magnetic gradiometer). Two such groups of stations were installed in 1999 southwest and southeast of Tokyo at a distance of ~150 km from each other. It has been indicated that, several months before strong earthquakes (M > 5), the values of gradients and phase velocities start anomalously changing, and directions toward sources of impending strong earthquakes appear in the distribution of gradient vector directions. Directions from sources of impending earthquakes appear in the distribution of phase velocity vector directions. It is proposed to use gradients and phase velocities of ULF and ELF geomagnetic disturbances as one of the factors in a short-term prediction of strong earthquakes.  相似文献   

19.
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号