首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a neutron star spins down, the nuclear matter is continuously converted into quark matter due to the core density increase, and then latent heat is released. We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. We have taken into account the conversion in the frame of the general theory of relativity. The released energy has been estimated as a function of changed rate of deconfinement baryon number. The numerical solutions to the cooling equation are seen to be very different from those without the heating effect. The results show that neutron stars may be heated to higher temperatures which is well matched with pulsar's data despite the onset of fast cooling in neutron stars with quark matter cores. It is also found that the heating effect has a magnetic field strength dependence. This feature could be particularly interesting for high temperatures of low-field millisecond pulsars at a later stage. The high temperature could fit the observed temperature for PSR J0437−4715.  相似文献   

2.
Under the combination effect of recommencement heating due to the spin-down of strange stars (SSs) and heat preservation due to the weak conduction heat of the crust, Cooper pair breaking and formation (PBF) in colour superconducting quark matter arises. We investigate the cooling of SSs with a crust in the colour superconductivity phase including both deconfinement heating (DH) and the PBF process. We find that DH can delay the thermal evolution of SSs and the PBF process suppresses the early temperature rise of the stars. The cooling SSs behave within the brightness constraint of young compact objects when the colour superconductivity gap is small enough.  相似文献   

3.
Observational evidence, and theoretical models of the magnetic field evolution of neutron stars is discussed. Observational data indicates that the magnetic field of a neutron star decays significantly only if it has been a member of a close interacting binary. Theoretically, the magnetic field evolution has been related to the processing of a neutron star in a binary system through the spin evolution of the neutron star, and also through the accretion of matter on the neutron star surface. I describe two specific models, one in which magnetic flux is expelled from the superconducting core during spin-down, via a copuling between Abrikosov fluxoids and Onsager-Feynman vortices; and another in which the compression and heating of the stellar crust by the accreted mass drastically reduces the ohmic decay time scale of a magnetic field configuration confined entirely to the crust. General remarks about the behaviour of the crustal field under ohmic diffusion are also made.  相似文献   

4.
早期中子星和夸克物质   总被引:1,自引:0,他引:1  
夸克禁闭的解除与夸克物质的存在一直是物理学家极感兴趣的问题。尽管理论上已指出在超高温或超高密的条件下可以有夸克物质存在,但是由于地面实验室的条件所限,目前还不能通过实验证实这一点.宇宙中被观测到的中子星(例如crab和Vela脉冲星)的中心密度大于4倍的核物质密度,其中心温度也可以达到10~8—10~9K,于是人们希  相似文献   

5.
The long awaited event of the detection of a gravitational wave from a binary neutron star merger and its electromagnetic counterparts marked the beginning of a new era in observational astrophysics. The brand-new field of gravitational wave astronomy combined with multi-messenger observations will uncover violent, highly energetic astrophysical events that could not be explored before by humankind. This article focuses on the presumable appearance of a hadron–quark phase transition and the formation of regions of deconfined quark matter in the interior of a neutron star merger product. The evolution of density and temperature profiles inside the inner region of the produced hypermassive/supramassive neutron star advises an incorporation of a hadron–quark phase transition in the equation of state of neutron star matter. The highly densed and hot neutron star matter of the remnant populate regions in the QCD phase diagram where a non neglectable amount of deconfined quark matter is expected to be present. If a strong hadron–quark phase transition would happen during the post-merger phase, it will be imprinted in the spectral properties of the emitted gravitational wave signal and might give an additional contribution to the dynamically emitted outflow of mass.  相似文献   

6.
本文研究了中子星的热演化、自转演化和磁场演化的相互影响.考虑了一个自洽模型:中子星因磁偶极辐射而自转减慢,在内部产生某些加热过程,中子星磁场通过壳层的欧姆耗散来衰减.结果表明,磁场衰减提高了加热过程的重要性;相反,加热效应减慢了磁衰减.因此可以得出,中子星的热、自转和磁场也许不是独立演化的.不仅如此,这些演化与初始条件有关,因此,人们也许可以从射电和X射线观测对脉冲星年龄、初始磁场和周期给出某些限制.  相似文献   

7.
Instanton effects are found to affect non-trivially the neutron matter to quark matter phase transition density. The relevance of the results for neutron stars is pointed out.  相似文献   

8.
The magnetic and thermal evolution of neutron stars is a very complex process with many non-linear interactions. For a decent understanding of neutron star physics, these evolutions cannot be considered isolated. A brief overview is presented, which describes the main magneto–thermal interactions that determine the fate of both isolated neutron stars and accreting ones. Special attention is devoted to the interplay of thermal and magnetic evolution at the polar cap of radio pulsars. There, a strong meridional temperature gradient is maintained over the lifetime of radio pulsars. It may be strong enough to drive thermoelectric magnetic field creation which perpetuate a toroidal magnetic field around the polar cap rim. Such a local field component may amplify and curve the poloidal surface field at the cap, forming a strong and small scale magnetic field as required for the radio emission of pulsars.  相似文献   

9.
The evolutionary scenario of a neutron star magnetic field is examined assuming a spin-down induced expulsion of magnetic flux originally confined to the core, in a case in which the expelled flux undergoes ohmic decay. The nature of field evolution, for accreting neutron stars, is investigated incorporating the crustal microphysics and material movement resulting from accretion. This scenario may explain the observed field strengths of neutron stars but only if the crustal lattice contains a large amount of impurity, which is in direct contrast to the models that assume an original crustal field.  相似文献   

10.
We present a brief, observational review about the study of the cooling behaviour of accretion-heated neutron stars and the inferences about the neutron-star crust and core that have been obtained from these studies. Accretion of matter during outbursts can heat the crust out of thermal equilibrium with the core and after the accretion episodes are over, the crust will cool down until crust-core equilibrium is restored. We discuss the observed properties of the crust cooling sources and what has been learned about the physics of neutron-star crusts. We also briefly discuss those systems that have been observed long after their outbursts were over, i.e, during times when the crust and core are expected to be in thermal equilibrium. The surface temperature is then a direct probe for the core temperature. By comparing the expected temperatures based on estimates of the accretion history of the targets with the observed ones, the physics of neutron-star cores can be investigated. Finally, we discuss similar studies performed for strongly magnetized neutron stars in which the magnetic field might play an important role in the heating and cooling of the neutron stars.  相似文献   

11.
A broad sample of computed realistic equations of state of superdense matter with a quark phase transition is used to construct a series of models of neutron stars with a strange quark core. The integral characteristics of the stellar configurations are obtained: gravitational mass, rest mass, radius, relativistic moment of inertia, and red shift from the star's surface, as well as the mass and radius of the quark core within the allowable range of values for the central pressure. The parameters of some of the characteristic configurations of the calculated series are also given and these are studied in detail. It is found that a new additional region of stability for neutron stars with strange quark cores may exist for some models of the equation of state.  相似文献   

12.
The first order deconfinement phase transitions in rotating hybrid stars are studied and it is found that if the surface tension is sufficiently large, the transition from metastable hadron matter to stable mixed hadron-quark matter during the spindown history of a hybrid star can cause a glitch.  相似文献   

13.
Pulsars have been recognized to be normal neutron stars, but sometimes have been argued to be quark stars. Submillisecond pulsars, if detected, would play an essential and important role in distinguishing quark stars from neutron stars. We focus on the formation of such submillisecond pulsars in this paper. A new approach to the formation of a submillisecond pulsar (quark star) by means of the accretion-induced collapse (AIC) of a white dwarf is investigated. Under this AIC process, we found that: (i) almost all newborn quark stars could have an initial spin period of ∼0.1 ms; (ii) nascent quark stars (even with a low mass) have a sufficiently high spin-down luminosity and satisfy the conditions for pair production and sparking process and appear as submillisecond radio pulsars; (iii) in most cases, the times of newborn quark stars in the phase with spin period <1 (or <0.5) ms are long enough for the stars to be detected.
As a comparison, an accretion spin-up process (for both neutron and quark stars) is also investigated. It is found that quark stars formed through the AIC process can have shorter periods (≤0.5 ms), whereas the periods of neutron stars formed in accretion spin-up processes must be longer than 0.5 ms. Thus, if a pulsar with a period shorter than 0.5 ms is identified in the future, it could be a quark star.  相似文献   

14.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

15.
We studied the evolution of isolated strange stars (SSs) synthetically, considering the influence of r -mode instability. Our results show that the cooling of SSs with non-ultrastrong magnetic fields is delayed by heating due to r -mode damping for millions of years, while the spin-down of the stars is dominated by gravitational radiation (GR). Especially for the SSs in a possible existing colour–flavour locked (CFL) phase, the effect of r -mode instability on the evolution of stars becomes extremely important because the viscosity, neutrino emissivity and specific heat involving pairing quarks are blocked. It leads to the cooling of these colour superconducting stars being very slow and the stars can remain at high temperature for millions of years, which differs completely from previous understanding. In this case, an SS in CFL phase can be located at the bottom of its r -mode instability window for a long time, but does not spin-down to a very low frequency for hours.  相似文献   

16.
We present models of temperature distribution in the crust of a neutron star in the presence of a strong toroidal component superposed to the poloidal component of the magnetic field. The presence of such a toroidal field hinders heat flow toward the surface in a large part of the crust. As a result, the neutron star surface presents two warm regions surrounded by extended cold regions and has a thermal luminosity much lower than in the case the magnetic field is purely poloidal. We apply these models to calculate the thermal evolution of such neutron stars and show that the lowered photon luminosity naturally extends their life-time as detectable thermal X-ray sources. Work partially supported by UNAM-DGAPA grant #IN119306.  相似文献   

17.
Disks originating from supernova fallback have been suggested to surround young neutron stars. Interaction between the disk and the magnetic field of the neutron star may considerably influence the evolution of the star through the so called propeller effect. There are many controversies about the efficiency of the propeller mechanism proposed in the literature. We investigate the fallback disk-involved spin-down of young pulsars. By comparing the simulated and measured results of pulsar evolution, we present some possible constraints on the propeller torques exerted by the disks on neutron stars.  相似文献   

18.
Coalescing binary neutron stars are the most promising candidates for detection by gravitational-wave detectors and are considered to be most promising for explaining the phenomenon of short gamma-ray bursts. The magnetic fields of neutron stars during their coalescence can produce a number of interesting observational manifestations and can affect significantly the shape of the gravitationalwave signal. In this paper, we model the distribution of magnetic fields in coalescing neutron stars by the population synthesis method using various assumptions about the initial parameters of the neutron stars and the evolution laws of their magnetic fields. We discuss possible electromagnetic phenomena preceding the coalescence of magnetized neutron stars and the effect of magnetic field energy on the shape of the gravitational-wave signal during the coalescence. For a log-normal (Gaussian in logarithm) distribution of the initialmagnetic fields consistent with the observations of radio pulsars, the distribution inmagnetic field energy during the coalescence is shown to describe adequately the observed luminosity function of short gamma-ray bursts under various assumptions about the pattern of field evolution and initial parameters of neutron stars.  相似文献   

19.
We present results from simulations of protoneutron star thermal evolution using neutrino opacities that are consistently calculated with the equation of state. When hyperons are allowed to appear in the system, we obtain metastable configurations that after the deleptonization stage become unstable. Concerning the evolution of old neutron stars, we present the results of our investigation on the effect of the Joule heating due to magnetic field dissipation. We conclude that this mechanism can be efficient in maintaining the surface temperature of the star above 3 × 104 - 105 K during a very long time (≥ 100 Myr), comparable with the decay time of the magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We consider the expulsion of the magnetic field from the super-conducting core of a neutron star and its subsequent decay in the crust. Particular attention is paid to a strong feedback of the distortion of magnetic field lines in the crust on the expulsion of the flux from the core. This causes a considerable delay in the core flux expulsion if the initial field strength is larger than 1011 G. It is shown that the hypothesis on the magnetic field expulsion induced by the neutron-star spin-down is adequate only for a relatively weak initial magnetic field B ≈1011 G. The expulsion time-scale depends not only on the conductivity of the crust, but also on the initial magnetic field strength itself. Our model of the field evolution naturally explains the existence of the residual magnetic field of neutron stars. Its strength is correlated with the impurity concentration in neutron-star crusts and anticorrelated with the initial field strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号