首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
We present the first study of the orbital period variations of five neglected Algol-type eclipsing binaries TT And, V342 Aql, RW Cap, BZ Cas and TW Lac, using their O–C diagrams gathered from all available times of eclipse minima. These O–C diagrams indicate that short term periodic variations superimposed on secular period increases as expected in mass transferring Algols. However, due to short time coverage of the data, the secular period increase is not clear in the case of BZ Cas and V342 Aql. The secular period increase is interpreted in terms of the combined effect of mass transfer between the components of the system and the mass loss by a stellar wind from the system. The mass transfer rates from the less massive secondary components to the more massive primaries for non-conservative cases would be about 10−7M/yr and 10−8M/yr for RW Cap and V342 Aql, respectively, and 10−9M/yr for TT And and TW Lac. Therefore, the Algol systems RW Cap and V342 Aql have the largest mass transfer rate, which could be in Case AB type, while those of the Algol systems TT And and TW Lac display the slow mass transfer rate and they could be in Case B type. The sinusoidal forms of the orbital period variations of all five Algol systems can be due to either by the light-time effects due to unseen components in these systems, or by the cyclic magnetic activity effects of the cool secondary components. The possible third bodies in all five Algol binaries would have masses larger than one solar mass. If these hypothetical large massive third bodies were normal stars, they should be detectable. Therefore, new photometric and spectroscopic observations of these systems and careful analyses of those data are required. Otherwise, the cyclic magnetic activity effects of the secondary components could be the basis of a working hypothesis in explaining the cyclic period variations of these systems.  相似文献   

2.
This study presents an investigation of the orbital period variations of five Algol type binaries, UX Leo, RW Mon, EQ Ori, XZ UMa and AX Vul based on all available minima times. The OC diagrams of all systems exhibit a periodic variation superimposed on a downward parabolic segment. The mass loss due to magnetic braking effect in the cooler components is assumed to account for the parabolic variation with a downward shape, while it is suggested that the light-time effect (LITE) due to an unseen component around the eclipsing binaries explains the tilted sinusoidal changes in their OC diagrams. The orbital period decrease rates for the systems are estimated as approximately between about 0.7 and 2.5 s per century. It is clearly seen that mass loss effect is more dominant than the expected mass transfer for classical Algols in this study. The minimum mass of the probable third bodies around the eclipsing pairs was calculated to be ?0.5 M except for UX Leo, in which it was estimated to be approximately 0.9 M. In order to search for third lights in the light curves of five systems, the V-light curves of the systems were analyzed and their physical and photometric parameters were determined. For UX Leo, a significant third light contribution was determined. We found a very small third light that can be tested using multi-color light curves, for RW Mon, EQ Ori and XZ UMa, while a third light for AX Vul could not be exposed.  相似文献   

3.
The W UMa-type systems (OO Aql, V839 Oph, V566 Oph, and SW Lac) were observed photoelectrically in two wavebands (B andV) during the years 1982–1983. The light curves of these systems are analysed using Kopal's frequency-domain technique and the optimisation method. New geometrical and physical elements have been determined. The absolute elements and the period variations of these systems are discussed.  相似文献   

4.
We present new analyses of variations in O-C diagrams of three Algol-type eclipsing binary stars:AD And,TW Cas and IV Cas.We have used all published minima times(including visual and photographic)as well as newly determined ones from our and Super Wasp observations.We determined orbital parameters of 3~(rd) bodies in the systems with statistically significant errors,using our code based on genetic algorithms and Markov chain Monte Carlo simulations.We confirmed the multiple nature of AD And and the triple-star model of TW Cas,and we proposed a quadruple-star model of IV Cas.  相似文献   

5.
The available photometry from the online databases were used for the first light curve analysis of eight eclipsing binary systems EI Aur, XY Dra, BP Dra, DD Her, VX Lac, WX Lib, RZ Lyn, and TY Tri. All these stars are of Algol-type, having the detached components and the orbital periods from 0.92 to 6.8 days. For the systems EI Aur and BP Dra the large amount of the third light was detected during the light curve solution. Moreover, 468 new times of minima for these binaries were derived, trying to identify the period variations. For the systems XY Dra and VX Lac the third bodies were detected with the periods 17.7, and 49.3 years, respectively.  相似文献   

6.
An attempt is made to trace back the possible progenitor systems of the Algol-type binaries TU Mon, SX Cas, and DM Per. The present characteristics are compared to the result of the evolution of 9M 0+5.4M 0. The position of the hot components in the HRD is discussed with regard to the theoretical models.Paper presented at the Lembang-Bamberg IAU Colloquium No. 80 on Double Stars: Physical Properties and Generic Relations, held at Bandung, Indonesia 3–7 June, 1983.  相似文献   

7.
An investigation of the orbital period changes of the neglected eclipsing binaries, RY Aqr, SZ Her, RV Lyr and V913 Oph, is presented based on all published minima times. Although the explanation of magnetic activity on the surface of the secondaries of the studied Algols is still open, the preferred light‐time effect due to the unseen components around the systems seems more plausible in explaining the tilted sinusoidal variations with relatively high‐amplitudes. The minimal mass values of possible tertiary components have been estimated to be about 1.06, 0.25, 0.78 and 2.85 M for RY Aqr, SZ Her, RV Lyr and V913 Oph, respectively and the results indicate that their contributions to the total light of the eclipsing pairs are measurable with high accuracy photometric and spectroscopic data, if they exist. Applegate's (1992) model has been discussed as an alternative mechanism assuming that the cooler components have magnetic cycles. It is found that the model parameters of RY Aqr and V913 Oph are consistent with the required values in Applegate's model. In addition to the first detailed orbital study on these systems, a statistical survey on the character of the OC variations of classical Algols has revealed that about 50 percent of the systems show cyclic behavior. This means that the presence of possible third bodies around classical Algols should be tested with careful analysis using new data. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
CCD multi-band light curves of the neglected eclipsing binaries V405 Cep, V948 Her, KR Mon and UZ Sge were obtained and analysed using the Wilson–Devinney code. New geometric and absolute parameters were derived and used to determine their current evolutionary state. V405 Cep, V948 Her and KR Mon are detached systems with their components in almost the same evolutionary stage. UZ Sge is a classical Algol system with a tertiary companion around it. Moreover, since the systems V405 Cep, V948 Her and UZ Sge contain an early type component, their light curves were examined for possible pulsation behaviour.  相似文献   

10.
Analyzing available photometry from the Super WASP and other databases, we performed the very first light curve analysis of eight eclipsing binary systems V537 And, GS Boo, AM CrB, V1298 Her, EL Lyn, FW Per, RU Tri, and WW Tri. All of these systems were found to be detached ones of Algol-type, having the orbital periods of the order of days. 722 new times of minima for these binaries were derived and presented, trying to identify the period variations caused by the third bodies in these systems.  相似文献   

11.
We present analyses of new optical photometric observations of three W UMa-type contact binaries FZ Ori, V407 Peg and LP UMa. Results from the first polarimetric observations of the FZ Ori and V407 Peg are also presented. The periods of FZ Ori, V407 Peg and LP UMa are derived to be 0.399986, 0.636884 and 0.309898 d, respectively. The O?C analyses indicate that the orbital periods of FZ Ori and LP UMa have increased with the rate of 2.28×10?8 and 1.25×10?6 d?yr?1, respectively and which is explained by transfer of mass between the components. In addition to the secularly increasing rate of orbital period, it was found that the period of FZ Ori has varied in sinusoidal way with oscillation period of ~30.1 yr. The period of oscillations are most likely to be explained by the light-time effect due to the presence of a tertiary companion. Small asymmetries have been seen around the primary and secondary maxima of light curves of all three systems, which is probably due to the presence of cool/hot spots on the components. The light curves of all three systems are analysed by using Wilson-Devinney code (WD) and the fundamental parameters of these systems have been derived. The present analyses show that FZ Ori is a W-subtype, and V407 Peg and LP UMa are A-subtype of the W UMa-type contact binary systems. The polarimetric observations in B, V, R and I bands, yield average values of polarization to be 0.26±0.03, 0.22±0.02, 0.22±0.03 and 0.22±0.05 per cent for FZ Ori and 0.21±0.02, 0.29±0.03, 0.31±0.01 and 0.31±0.04 per cent for V407 Peg, respectively.  相似文献   

12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号