首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, wildfires in the western United States have occurred with increasing frequency and scale. Climate change scenarios in California predict prolonged periods of droughts with even greater potential for conditions amenable to wildfires. The Sierra Nevada Mountains provide 70% of water resources in California, yet how wildfires will impact watershed-scale hydrology is highly uncertain. In this work, we assess the impacts of wildfires perturbations on watershed hydrodynamics using a physically based integrated hydrologic model in a high-performance-computing framework. A representative Californian watershed, the Cosumnes River, is used to demonstrate how postwildfire conditions impact the water and energy balance. Results from the high-resolution model show counterintuitive feedbacks that occur following a wildfire and allow us to identify the regions most sensitive to wildfires conditions, as well as the hydrologic processes that are most affected. For example, whereas evapotranspiration generally decreases in the postfire simulations, some regions experience an increase due to changes in surface water run-off patterns in and near burn scars. Postfire conditions also yield greater winter snowpack and subsequently greater summer run-off as well as groundwater storage in the postfire simulations. Comparisons between dry and wet water years show that climate is the main factor controlling the timing at which some hydrologic processes occur (such as snow accumulation) whereas postwildfire changes to other metrics (such as streamflow) show seasonally dependent impacts primarily due to the timing of snowmelt, illustrative of the integrative nature of hydrologic processes across the Sierra Nevada-Central Valley interface.  相似文献   

2.
Geographically isolated wetlands (GIWs) are commonly reported as having hardpan or low hydraulic conductivity units underneath that produce perched groundwater, which can sustain surface water levels independently of regional aquifer fluctuations. Despite the potential of GIW-perched aquifer systems to provide important hydrological and ecological functions such as groundwater storage and native amphibian habitat, little research has studied the hydrologic controls and dynamics of these systems. We compared several ridge-top depressional GIW-perched groundwater systems to investigate the role of watershed morphology on hydroregime and groundwater-surface water interaction. Ridge-top depressional wetlands in the Daniel Boone National Forest, Kentucky were chosen because they offer natural controls such as lack of apparent connection to surface water bodies, similar climate, and similar soils. Three wetlands with different topographic slopes and hillslope structures were mapped to distinguish key geomorphic parameters and monitored to characterize groundwater-surface water interaction. Wetlands with soil hummocks and low upland slopes transitioned from infiltration to groundwater discharge conditions in the spring and during storm events. The magnitude and duration of this transition fell along a continuum, where higher topographic slopes and steeper uplands produced comparably smaller and shorter head reversals. This demonstrates that ridge-top GIW-perched groundwater systems are largely sensitive to the runoff-recharge relationship in the upland area which can produce significant groundwater storage on a small-scale.  相似文献   

3.
Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Over the past century, groundwater levels in California's San Joaquin Valley have dropped by more than 30 m in some areas mostly due to excessive groundwater extraction used to irrigate agricultural lands and sustain a growing population. Between 2012 and 2015, California experienced the worst drought in its recorded history, depleting surface water supplies and further exacerbating groundwater depletion in the region. Due to a lack of groundwater regulation, exact quantities of extracted groundwater in California are unknown and hard to quantify. Recent adoption of the Sustainable Groundwater Management Act has intensified efforts to identify sustainable groundwater use. However, understanding sustainable use in a highly productive agricultural system with an extremely complex surface water allocation system, variable groundwater use, and spatially extensive and diverse irrigation practices is no easy task. Using an integrated hydrologic model coupled with a land surface model, we evaluated how water management activities, specifically a suite of irrigation and groundwater pumping scenarios, impact surface water–groundwater fluxes and storage components and how those activities and the relationships between them change during drought. Results showed that groundwater pumping volume had the most significant impact on long-term water storage changes. A comparison with total water storage anomaly (TWSA) estimates from NASA's Gravity Recover and Climate Experiment (GRACE) provided some insight regarding which combinations of pumping and irrigation matched the GRACE TWSA estimates, lending credibility to these scenarios. In addition, the majority of long-term water storage changes during the recent drought occurred in groundwater storage in the deeper subsurface.  相似文献   

5.
Establishing predevelopment benchmark groundwater conditions is challenging without long-term records to discern impacts of pumping and climate change on aquifer levels. Understanding periodic natural cycles and trends require 100 years or more data which rarely exist. Using limited records, we develop an approach to hindcast multidecadal levels and examine the temporal evolution of climatic and pumping impacts. The methodology includes a wavelet-aided statistical model, constrained by temporal scales of physical processes responsible for groundwater level variation, including rainfall, evapotranspiration and pumping stresses. The model and hindcasts are tested at three sites in Florida using traditional split calibration-verification methods for the period of record and with the documented historical drought and wet years for the period of no-record. The pumping impact is quantified over time and compared with regional groundwater models, revealing that withdrawals are responsible for 30 to 70% of the declines in levels since 1960s. Hindcasting yielding 110 years of monthly levels is used to assess the effect of climate change and pumping on the frequency of critical low levels. At all three sites, the frequencies of critical low levels increase significantly in the 1960 to 2015 period when compared to the 1904 to 1959 period. For example, at site 1, the return period of the critical low level is shortened by 3.9 years due to climate change and 2.2 years due to pumping.  相似文献   

6.
Qingjiang River, the second largest tributary of the Yangtze River in Hubei Province, has taken on the important tasks for power generation and flood control in Hubei Province. The Qingjiang River watershed has a subtropical monsoon climate and, as a result, has dramatic diversity in its water resources. Recently, global warming and climate change have seriously affected the Qingjiang watershed’s integrated water resources management. In this article, general circulation model (GCM) and watershed hydrological models were applied to analyze the impacts of climate change on future runoff of Qingjiang Watershed. To couple the scale difference between GCM and watershed hydrological models, a statistical downscaling method based on the smooth support vector machine was used to downscale the GCM’s large-scale output. With the downscaled precipitation and evaporation, the Xin-anjiang hydrological model and HBV model were applied to predict the future runoff of Qingjiang Watershed under A2 and B2 scenarios. The preformance of the one-way coupling approach in simulating the hydrological impact of climate change in the Qingjiang watershed is evaluated, and the change trend of the future runoff of Qingjiang Watershed under the impacts of climate change is presented and discussed.  相似文献   

7.
Riverbank filtration (RBF) has been widely used throughout the world as an effective means to regulate surface water and groundwater resources and pretreat raw water for municipal water supply. The quality of the water from a riverside well field and the mixing ratios of surface water and groundwater is primarily impacted by the hydrodynamic processes in the RBF system. The RBF system is largely controlled by the water exploiting system in addition to the natural hydrologic condition of the river–aquifer system. As one of the most important design parameters of the riverside well field, the drawdown of groundwater level greatly determines the water head differences between the river water and groundwater as well as the field flow net, which subsequently impacts the mixing of river water and groundwater and water quality significantly. This study aimed to improve the understanding of the mixing process between the surface water and groundwater and estimate the impact of the RBF on the mixing ratio of surface water–groundwater and water quality quantitatively. A set of field pumping tests with various groundwater level drawdowns were carried out independently and successively at a riverside field with a single pumping well near the Songhua River in Northeast China in August 2017. During these tests, the water levels and hydrochemical parameters of the Songhua River, the adjacent aquifer, and the pumping well were monitored. The dynamic mixing process of the river water and groundwater and water quality under various drawdown conditions were analysed systematically using analytical methods. The results obtained from Dupuit method and the Mirror Image method in conjunction with the Hydrochemical Tracing method showed that the pumping water directly from the river water reached 60% ± 10% after a steady flow net was established. The larger the proportion of the pumping water captured from the river, the better quality of the pumping water was, because the quality of the river water (only limited to some water quality parameters monitored which were minority) was better than that of the groundwater. The results also showed that total Fe, TDS, total hardness, CODMn, and K+ were relatively sensitive to the changes of groundwater drawdown, and their concentrations decreased with an increase in the groundwater drawdown. It can be concluded that both the mixing ratio of the surface water and the groundwater and the water quality of the riverside well field can be regulated through adjusting the designed drawdown of the groundwater level, which is helpful for the design and the optimization of the riverside well water intake engineering.  相似文献   

8.
Monitoring regional groundwater extraction: the problem   总被引:1,自引:0,他引:1  
Bredehoeft JD 《Ground water》2011,49(6):808-814
As hydraulic disturbances (signals) are propagated through a groundwater system two things happen: (1) the higher frequencies in the disturbance are filtered out by the physics of the system and (2) the disturbance takes time to propagate through the system. The filtering and time delays depend on the aquifer diffusivity. This means, for example, if one is observing a water table aquifer at some distance from where annual recharge is occurring, only the long-term average effect of the recharge will be transmitted to the observation point--the system filters out annual variations. These facts have profound impacts on what is feasible to monitor. For example, if one is concerned about the impact of pumping on a spring in a water table aquifer, where the pumping is more than 20 miles or so from the spring, there will be a long delay before the pumping impacts the spring and there will be an equally long delay before a long-term reduction in the pumping regime will restore the spring. The filtering by lower diffusivity groundwater systems makes it impossible to discriminate between the impacts of several major pumpers in the system and/or long-term climate changes.  相似文献   

9.
The effect of potential climate change on groundwater‐dependent vegetation largely depends on the nature of the climate change (drying or wetting) and the level of current ecosystem dependence on groundwater resources. In south‐western Australia, climate projections suggest a high likelihood of a warmer and drier climate. The paper examines the potential environmental impacts by 2030 at the regional scale on groundwater‐dependent terrestrial vegetation (GDTV) adapted to various watertable depths, on the basis of the combined consideration of groundwater modelling results and the framework for GDTV risk assessment. The methodology was tested for the historical period from 1984 to 2007, allowing validation of the groundwater model results' applicability to such an assessment. Climate change effects on GDTV were evaluated using nine global climate models under three greenhouse gas emission scenarios by applying the climate projections to groundwater models. It was estimated that under dry climate scenarios, GDTV is likely to be under high and severe risk over more than 20% of its current habitat area. The risk is also likely to be higher under an increase in groundwater abstraction above current volumes. The significance of climate change risk varied across the region, depending on both the intensity of the change in water regime and the sensitivity of the GDTV to such change. Greater effects were projected for terrestrial vegetation dependent on deeper groundwater (6–10 m). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A physically constrained wavelet-aided statistical model (PCWASM) is presented to analyse and predict monthly groundwater dynamics on multi-decadal or longer time scales. The approach retains the simplicity of regression modelling but is constrained by temporal scales of processes responsible for groundwater level variation, including aquifer recharge and pumping. The methodology integrates statistical correlations enhanced with wavelet analysis into established principles of groundwater hydraulics including convolution, superposition and the Cooper–Jacob solution. The systematic approach includes (1) identification of hydrologic trends and correlations using cross-correlation and multi-time scale wavelet analyses; (2) integrating temperature-based evapotranspiration and groundwater pumping stresses and (3) assessing model prediction performances using fixed-block k-fold cross-validation and split calibration-validation methods. The approach is applied at three hydrogeologicaly distinct sites in North Florida in the United States using over 40 years of monthly groundwater levels. The systematic approach identifies two patterns of cross-correlations between groundwater levels and historical rainfall, indicating low-frequency variabilities are critical for long-term predictions. The models performed well for predicting monthly groundwater levels from 7 to 22 years with less than 2.1 ft (0.7 m) errors. Further evaluation by the moving-block bootstrap regression indicates the PCWASM can be a reliable tool for long-term groundwater level predictions. This study provides a parsimonious approach to predict multi-decadal groundwater dynamics with the ability to discern impacts of pumping and climate change on aquifer levels. The PCWASM is computationally efficient and can be implemented using publicly available datasets. Thus, it should provide a versatile tool for managers and researchers for predicting multi-decadal monthly groundwater levels under changing climatic and pumping impacts over a long time period.  相似文献   

11.
Watersheds are complex systems due to their surface and subsurface spatially connected water fluxes and biochemical processes that shape Earth's critical zone. In intensively managed landscapes, the implementation of watershed management practices (WMPs) regulate their short‐term responses, whereas climate variability controls the long‐term processes. Understanding their responses to anthropogenic and natural stressors requires a holistic approach that takes into account their multiscale spatio‐temporal linkages. The objective of this study was to simulate the impacts of spatially and temporally varying WMPs and projected climate changes on the surface and groundwater resources in the Upper Sangamon River Basin (USRB), a watershed in central Illinois greatly impacted by agricultural and industrial operations. The physically based hydrologic model MIKE‐SHE was used to simulate the hydrologic responses of the basin to different WMPs and climatic conditions. The simulation of a WMP was varied spatially across the basin to determine the spectrum of responses and critical conditions. In general, the wetlands and forested riparian buffer scenarios were found to cause a reduction in the average streamflow, whereas crop rotation had varied responses depending on the location of implementation and the climate condition assumed. Reductions of up to 30% in the average streamflow were found for the forested riparian buffer under the ESM 2M climate projections, whereas an increase of up to 13% with the crop rotation schemes under CM3 climate was predicted. The model results showed that the installation of tile drains across the USRB increased the water table depth (from ground level) by up to 56%, making crop production possible. Groundwater level in USRB appeared to be more sensitive to future climatic conditions than to WMP implementation. The impacts of WMPs are determined to depend on the climate conditions under which they are applied. Investigating individual and combined stressors' effects over the critical zone at a watershed scale can lead to a more comprehensive analysis of the risk and trade‐offs in every managerial decision that will enable an efficient use of resources.  相似文献   

12.
This paper describes how climate influences the hydrology of an ephemeral depressional wetland. Surface water and groundwater elevation data were collected for 7 years in a Coastal Plain watershed in South Carolina USA containing depressional wetlands, known as Carolina bays. Rainfall and temperature data were compared with water‐table well and piezometer data in and around one wetland. Using these data a conceptual model was created that describes the hydrology of the system under wet, dry, and drought conditions. The data suggest this wetland operates as a focal point for groundwater recharge under most climate conditions. During years of below‐normal to normal rainfall the hydraulic gradient indicated the potential for groundwater recharge from the depression, whereas during years of above‐normal rainfall, the hydraulic gradient between the adjacent upland, the wetland margin, and the wetland centre showed the potential for groundwater discharge into the wetland. Using high‐resolution water‐level measurements, this groundwater discharge condition was found to hold true even during individual rainfall events, especially under wet antecedent soil conditions. The dynamic nature of the hydrology in this Carolina bay clearly indicates it is not an isolated system as previously believed, and our groundwater data expand upon previous hydrologic investigations at similar sites which do not account for the role of groundwater in estimating the water budget of such systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
We compared streamflow in basins under the combined impacts of an upland dam and groundwater pumping withdrawals, by examining streamflow in the presence and absence of each impact. As a qualitative analysis, inter‐watershed streamflow comparisons were performed for several rivers flowing into the east side of the Central Valley, CA. Results suggest that, in the absence of upland dams supporting large reservoirs, some reaches of these rivers might develop ephemeral streamflow in late summer. As a quantitative analysis, we conducted a series of streamflow/groundwater simulations (using MODFLOW‐2000 plus the streamflow routing package, SFR1) for a representative hypothetical watershed, with an upland dam and groundwater pumping in the downstream basin, under humid, semi‐arid, and arid conditions. As a result of including the impact of groundwater pumping, post‐dam removal simulated streamflow was significantly less than natural streamflow. The model predicts extensive ephemeral conditions in the basin during September for both the arid and semi‐arid cases. The model predicts continued perennial conditions in the humid case, but spatially weighted, average streamflow of only 71% of natural September streamflow, as a result of continued pumping after dam removal. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

14.
Water temperatures in mountain streams are likely to rise under future climate change, with negative impacts on ecosystems and water quality. However, it is difficult to predict which streams are most vulnerable due to sparse historical records of mountain stream temperatures as well as complex interactions between snowpack, groundwater, streamflow and water temperature. Minimum flow volumes are a potentially useful proxy for stream temperature, since daily streamflow records are much more common. We confirmed that there is a strong inverse relationship between annual low flows and peak water temperature using observed data from unimpaired streams throughout the montane regions of the United States' west coast. We then used linear models to explore the relationships between snowpack, potential evapotranspiration and other climate-related variables with annual low flow volumes and peak water temperatures. We also incorporated previous years' flow volumes into these models to account for groundwater carryover from year to year. We found that annual peak snowpack water storage is a strong predictor of summer low flows in the more arid watersheds studied. This relationship is mediated by atmospheric water demand and carryover subsurface water storage from previous years, such that multi-year droughts with high evapotranspiration lead to especially low flow volumes. We conclude that watershed management to help retain snow and increase baseflows may help counteract some of the streamflow temperature rises expected from a warming climate, especially in arid watersheds.  相似文献   

15.
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions.  相似文献   

16.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

17.
ABSTRACT

The impacts of future climate change on the agricultural water supply capacities of irrigation facilities in the Geum River basin (9645.5 km2) of South Korea were investigated using an integrated modeling framework that included a water balance network model (MODSIM) and a watershed-scale hydrologic model (Soil and Water Assessment Tool, SWAT). The discharges and baseflows from upland drainage areas were estimated using SWAT, and the predicted flow was used to feed agricultural reservoirs and multipurpose dams in subwatersheds. Using a split sampling method, we calibrated the daily streamflows and dam inflows at three locations using data from 6 years, including 3 years of calibration data (2005–2007) followed by 3 years of validation data (2008–2010). In the MODSIM model, the entire basin was divided into 14 subwatersheds in which various agricultural irrigation facilities such as agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were defined as a network of hydraulic structures within each subwatershed. These hydraulic networks between subwatersheds were inter-connected to allow watershed-scale analysis and were further connected to municipal and industrial water supplies under various hydrologic conditions. Projected climate data from the HadGEM3-RA RCP 4.5 and 8.5 scenarios for the period of 2006–2099 were imported to SWAT to calculate the water yield, and the output was transferred to MODSIM in the form of time-series boundary conditions. The maximum shortage rate of agricultural water was estimated as 38.2% for the 2040s and 2080s under the RCP 4.5 scenario but was lower under the RCP 8.5 scenario (21.3% in the 2040s and 22.1% in the 2080s). Under the RCP 4.5 scenario, the projected shortage rate was higher than that during the measured baseline period (1982–2011) of 25.6% and the RCP historical period (1982–2005) of 30.1%. The future elevated drought levels are primarily attributed to the increasingly concentrated rainfall distribution throughout the year under a monsoonal climate, as projected by the IPCC climate scenarios.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

18.
Wetlands play an important role in watershed eco-hydrology. The occurrence and distribution of wetlands in a landscape are affected by the surface topography and the hydro-climatic conditions. Here, we propose a minimalist probabilistic approach to describe the dynamic behaviour of wetlandscape attributes, including number of inundated wetlands and the statistical properties of wetland stage, surface area, perimeter, and storage volume. The method relies on two major assumptions: (a) wetland bottom hydrologic resistance is negligible; and (b) groundwater level is parallel to the mean terrain elevation. The approach links the number of inundated wetlands (depressions with water) to the distribution of wetland bottoms and divides, and the position of the shallow water table. We compared the wetlandscape attribute dynamics estimated from the probabilistic approach to those determined from a parsimonious hydrologic model for groundwater-dominated wetlands. We test the reliability of the assumptions of both models using data from six cypress dome wetlands in the Green Swamp Wildlife Management Area, Florida. The results of the hydrologic model for groundwater-dominated wetlands showed that the number of inundated wetlands has a unimodal dependence on the groundwater level, as predicted by the probabilistic approach. The proposed models provide a quantitative basis to understand the physical processes that drive the spatiotemporal hydrologic dynamics in wetlandscapes impacted by shallow groundwater fluctuations. Emergent patterns in wetlandscape hydrologic dynamics are of key importance not only for the conservation of water resources, but also for a wide range of eco-hydrological services provided by connectivity between wetlands and their surrounding uplands.  相似文献   

19.
Heyin Chen 《水文科学杂志》2013,58(10):1739-1758
Abstract

Changes in climate and land cover are among the principal variables affecting watershed hydrology. This paper uses a cell-based model to examine the hydrologic impacts of climate and land-cover changes in the semi-arid Lower Virgin River (LVR) watershed located upstream of Lake Mead, Nevada, USA. The cell-based model is developed by considering direct runoff based on the Soil Conservation Service - Curve Number (SCS-CN) method and surplus runoff based on the Thornthwaite water balance theory. After calibration and validation, the model is used to predict LVR discharge under future climate and land-cover changes. The hydrologic simulation results reveal climate change as the dominant factor and land-cover change as a secondary factor in regulating future river discharge. The combined effects of climate and land-cover changes will slightly increase river discharge in summer but substantially decrease discharge in winter. This impact on water resources deserves attention in climate change adaptation planning.
Editor Z.W. Kundzewicz  相似文献   

20.
The hydrological sensitivities to long-term climate change of a watershed in Eastern Canada were analysed using a deterministic watershed runoff model developed to simulate watershed acidification. This model was modified to study atmospheric change effects in the watershed. Water balance modelling techniques, modified for assessing climate effects, were developed and tested for a watershed using atmospheric change scenarios from both state of the art general circulation models and a series of hypothetical scenarios. The model computed daily surface, inter- and groundwater flows from the watershed. The moisture, infiltration and recharge rate are also computed in the soil reservoirs. The thirty years of simulated data can be used to evaluate the effects of climatic change on soil moisture, recharge rate and surface and subsurface flow systems. The interaction between surface and subsurface water is discussed in relation to climate change. These hydrological results raise the possibility of major environmental and socioeconomic difficulties and have significant implications for future water resource planning and management. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号