共查询到15条相似文献,搜索用时 78 毫秒
1.
2.
基于遥感空间特性的广东省水稻单产快速预估 总被引:1,自引:0,他引:1
分析了目前水稻遥感估产的技术现状,基于遥感数据的空间特性,提出了一种快速预测水稻单产的方法,估产试验表明该方法简单实用,具有推广意义. 相似文献
3.
4.
针对中国开展的国外农作物产量遥感估测大多依靠中低分辨率耕地信息、省级(州级)或国家级作物产量统计数据的现状,本文以美国玉米为例,探讨利用多年中高分辨率作物分布信息、时序遥感植被指数和县级作物产量统计数据开展国外重点地区作物单产遥感估测技术研究,以期进一步提高中国对国外农作物产量监测精度和精细化水平。首先,利用美国农业部国家农业统计局(NASS/USDA)生产的作物分布数据(CDL)获得多个年份玉米空间分布图,并对相应年份250 m分辨率16天合成的MODIS-NDVI时序数据进行掩膜处理,统计获得每年各县域内玉米主要生育期NDVI均值;其次,以各州为估产区,以多年县级玉米统计单产和县域内玉米主要生育期NDVI均值为基础,建立各州玉米主要生育期NDVI与玉米单产间关系模型;然后,通过主要生育期玉米单产和玉米植被指数间拟合程度,筛选确定各州玉米最佳估产期和最佳估产模型。最终,利用最佳估产模型实现美国各州玉米单产估测和全国玉米单产推算。其中,建模数据覆盖时间为2007年—2010年,验证数据为2011年。结果表明,应用最佳估产模型的2011年美国各州玉米单产估测相对误差在-4.16%—4.92%,均方根误差在148.75—820.93 kg/ha,各州估测结果计算获得全国玉米单产的相对误差仅为2.12%,均方根误差为285.57 kg/ha。可见,本研究的作物单产遥感估测技术方法具有一定可行性,可准确估测全球重点地区作物单产信息。 相似文献
5.
基于遥感数据与作物生长模型同化的冬小麦长势监测与估产方法研究 总被引:27,自引:2,他引:27
本文以LAI作为结合点,讨论了利用复合型混合演化(SCE—UA)算法实现CERES—Wheat模型与遥感数据同化的可行性。CERES—Wheat模型同化后主要生育期和产量的模拟值分别与真实条件下模型相应模拟值以及实测值进行比较。结果表明,同化后CERES—Wheat模型的模拟精度对LAI外部同化数据的误差并不十分敏感。并且在LAI同化数据较少时,也可获得较好的同化结果。这一特点体现了SCE—UA算法应用于同化过程的优越性,为同化策略在区域冬小麦长势监测及估产中的应用提供了基础。 相似文献
6.
关键时相长势—环境和景观特征对河北省县级尺度冬小麦单产估算精度影响分析 总被引:1,自引:0,他引:1
区域尺度上精准、快速的作物单产估算可以有效地为国家粮食安全相关政策的制定提供数据支撑。本文针对县级估产时相和特征类型选择问题,基于遥感、气象和统计等多源数据,通过不同时相和特征要素之间的组合分析来探索其对于县级尺度冬小麦单产估算的影响。特征要素主要考虑作物长势、环境(水分和光温条件)和农田景观3个类型;时相主要考虑由冬小麦生长过程NDVI (Normalized Difference Vegetation Index)曲线特征提取的5个关键时段(P1—P5)。利用不同时相与类型特征的组合与统计单产构建随机森林回归模型,根据精度评价结果分析各组合的优劣。2014年—2017年的数据用来建模,2018年数据用来验证。对于单时相,P2、P3、P4的表现明显好于P1和P5;多时相的准确度明显优于单时相,其中P2、P4的组合效果最佳。对于不同类型的特征要素,作物长势特征参量对估产精度的影响最大,而水分影响和光温条件等环境因子的加入对估产准确性并没有明显提升,农田景观参数的加入能够有效提升估产的准确性。在最优组合的基础上,剔除冗余变量优选出5个重要的指标因子(PROP、NDVI_P2、B2_P2、... 相似文献
7.
8.
农作物长势监测和产量预测对于国家制定相关粮食政策、农业发展等都具有重要的意义,如何获得高效、宏观、精确的估产方法一直是学者关注的重点问题。以吉林省德惠市的玉米作为研究对象,利用光能利用率模型对玉米进行产量估算的研究,并且使用空间数据插值方法中的反距离权重法获得了每月平均温度数据的格网数据。通过玉米的净初级生产力NPP的累计值以及玉米的收获指数来获得最终的玉米产量值,利用验证点实测产量值与估算值的相关性和相对误差进行精度验证,相关系数R^2为0.649 9,平均相对误差值为1.676%,证明基于光能利用率模型的玉米估产在研究区具有一定的可行性。 相似文献
9.
美国冬小麦产量遥感预测方法 总被引:7,自引:1,他引:7
介绍了依据时序遥感植被指数数据进行产量预测的方法。通过美国冬小麦产量的历史趋势分析去除趋势产量 ,得到气象产量。利用区域作物生长过程线 ,提取曲线的各个特征参数 ,并将各参数与气象产量的值进行相关分析 ,得到美国冬小麦产量遥感敏感因子 ,采用一次线性拟合的方法建立回归方程 ,估算当年的冬小麦产量。依据此方法对美国 2 0 0 3年各州的冬小麦单产进行了预测 ,并将最终的预测结果与美国农业统计局的数据进行了对比 ,两者间的误差在 - 11 4 2 %至 11 10 %之间 ,相关系数为 0 89。 相似文献
10.
11.
12.
Jianqiang Ren Zhongxin Chen Qingbo Zhou Huajun Tang 《International Journal of Applied Earth Observation and Geoinformation》2008,10(4):403
The significance of crop yield estimation is well known in agricultural management and policy development at regional and national levels. The primary objective of this study was to test the suitability of the method, depending on predicted crop production, to estimate crop yield with a MODIS-NDVI-based model on a regional scale. In this paper, MODIS-NDVI data, with a 250 m resolution, was used to estimate the winter wheat (Triticum aestivum L.) yield in one of the main winter-wheat-growing regions. Our study region is located in Jining, Shandong Province. In order to improve the quality of remote sensing data and the accuracy of yield prediction, especially to eliminate the cloud-contaminated data and abnormal data in the MODIS-NDVI series, the Savitzky–Golay filter was applied to smooth the 10-day NDVI data. The spatial accumulation of NDVI at the county level was used to test its relationship with winter wheat production in the study area. A linear regressive relationship between the spatial accumulation of NDVI and the production of winter wheat was established using a stepwise regression method. The average yield was derived from predicted production divided by the growing acreage of winter wheat on a county level. Finally, the results were validated by the ground survey data, and the errors were compared with the errors of agro-climate models. The results showed that the relative errors of the predicted yield using MODIS-NDVI are between −4.62% and 5.40% and that whole RMSE was 214.16 kg ha−1 lower than the RMSE (233.35 kg ha−1) of agro-climate models in this study region. A good predicted yield data of winter wheat could be got about 40 days ahead of harvest time, i.e. at the booting-heading stage of winter wheat. The method suggested in this paper was good for predicting regional winter wheat production and yield estimation. 相似文献
13.
14.
15.
遥感技术估算森林生物量的研究进展 总被引:5,自引:0,他引:5
从单传感器和多传感器遥感数据集成两个方面介绍和阐述了遥感技术估算森林生物量的发展现状,以此提炼遥感技术估算森林生物量研究面临的问题。 相似文献