首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
根据历年气候及探空资料,分析贵阳降雪和凝冻天气的大气层结特征,结果表明:出现凝冻天气时大气中多有逆温层存在,地面气温多在0℃以下,中高层风速较降雪时大;降雪天气时中高层气温较凝冻天气要低,地面气温多在-3~3℃之间;2种天气的大气在垂直方向上均处于比较稳定的状态。  相似文献   

2.
南海季风爆发前后大气层结和混合层的演变特征   总被引:4,自引:1,他引:4  
根据南海季风试验期间“科学1号”和“实验3号”在加密观测期间所得到的1天4次的探空观测资料,分析了南海季风爆发前后大气层结和混合层的演变特征。结果表明:(1)南海北部季风爆发的日期是5月17日,而南海南部季风爆发的日期是5月21~22日左右,季风爆发在南海北部表现出与南部明显不同的特征,其突然的爆发性更为显著。(2)南海季风爆发前后,混合层高度的变化在南海南部与南海北部有明显的不同。在季风爆发前,都存在着明显的混合层,但其厚度不同。南海南部混合层的高度变化在930~970hPa范围内,而南海北部偏高,约为900~980hPa。随着季风的爆发,混合层厚度减小,甚至消失。(3)南海季风爆发前后对流层中低层表现出明显不同的层结结构。季风爆发前,空气比湿较小,大气稳定,混合层顶高度较高,在对流层中存在一个明显的干层。随着季风的爆发,干层逐渐减弱,或趋于消失。这主要是由于季风爆发后,西南季风把大量暖湿空气输送到南海地区,对流活动增强,大气呈现不稳定层结并伴有降水发生的结果。  相似文献   

3.
齐义君  周艳军  卢宪梅  李延江 《气象》2004,30(9):F002-F003
利用 1 992~ 2 0 0 1年 1~ 1 2月数值预报、天气图、卫星云图、渤海 4个测站及本区域 4个测站自记雨量、风向、风速等同步资料 ,对秦皇岛市出现的 1 8次暴雨、8次大雪天气过程进行综合对比分析 ,探讨了海区风向变化对降水落区的影响。通过 2 0 0 2~ 2 0 0 3年试报Ts值为 53%。  相似文献   

4.
南方不同类型冰冻天气的大气层结和云物理特征研究   总被引:4,自引:0,他引:4  
利用观测资料和CAMS中尺度云分辨模式,对南方3次不同类型冻雨天气过程进行模拟,重点研究了冰冻天气中冻雨区云系宏、微观结构及大气层结特征,初步分析了冻雨形成的云物理机制.结果表明:(1)逆温层的存在是冻雨发生的必要条件,低层湿度较大的逆温常与冻雨天气有关.3次冻雨过程的冻雨区都存在逆温层,其中第一、二次过程属于锋面逆温,而第三次过程属于平流逆温.可见,逆温层结有利于冻雨的发生,但逆温层的存在仅是形成冻雨的条件之一.冻雨的发生还与水汽(湿度)、风向风速、地面特征有关.低层有水汽输入到冻雨区、地面温度等于或低于0℃,有利于冻雨形成和过冷雨水的冻结.(2)冻雨的形成需要满足3个主要条件:在对流层中高层存在冻结层,冻结层下要有暖层和逆温层,近地层有一个温度<0℃的冷却层,并且低层的冷却层相对湿度较高.中高层冻结层主要产生冰相降水粒子,中层的暖层可以确保上层降落下来的固态降水粒子(雪或霰)融化成雨滴或在融化层中直接产生液态降水.这样,雨滴下降到低空冷却层后会逐渐变成过冷雨滴,当过冷却雨滴接触到<0℃的地面或者其他物体表面时,迅速冻结形成冻雨.(3)不同冻雨区上空存在2种不同类型的云,对应云中有2种明显不同的温度层结:混合相云中的“冷-暖-冷”层结和水云中的“暖-冷”层结.具有2种不同层结特征的不同冻雨区云系,对应2种不同的微物理结构,具有2种不同的冻雨形成的云物理机制.(4)同一类型天气系统中的冻雨区,可以存在不同的温度层结、云的微物理结构和冻雨形成的机制;不同类型天气系统也可以存在特征相同的冻雨区,即冻雨形成的温度层结、云的微物理结构和冻雨形成的物理机制都相同.  相似文献   

5.
2010年冬季北京初雪预报难点分析   总被引:1,自引:2,他引:1  
郭锐  张琳娜  李靖  王国荣  孙秀忠 《气象》2012,38(7):858-867
北京地区非典型性降雪是预报中的难题,尤其是偏东风在弱降雪过程中的作用难以把握。本文利用常规观测资料与北京地区特种观测资料,对北京2010年冬季(2010年12月至2011年2月)空报的初雪个例和实际初雪个例进行了诊断分析,得出了一些有意义的结果:偏东风的干湿性质取决于东部上游地区的干湿条件。当上游为干中心时,它是一支干平流。12月12日夜间的降雪空报是由于尽管中低层上升运动显著,但是边界层湿度太小,偏东风实际为一支干平流,对北京地区增湿没有明显贡献。北部干冷空气的快速南下控制北京地区,也是预报出现偏差的重要原因。2月9日初雪过程,是边界层高湿区中,弱的辐合上升运动作用下产生的稳定性降雪。对比发现边界层水汽条件在北京地区冬季降雪中非常重要。当边界层水汽条件差,即使中低层上升运动系统明显,也很难形成有效降水。而在边界层受充沛的暖湿气团控制并配合有弱辐合上升运动,即使中高层并无明显的辐合系统,也可产生明显降水。  相似文献   

6.
选取2006—2008年发生在北京及其周边地区的28次雷暴过程,基于大气不稳定度参数和雷达参量对雷暴过程进行分类,分析了不同分类条件下的总闪电活动 (SAFIR3000三维闪电定位系统观测) 和对流降水 (雷达反演) 的关系。结果表明:整体而言,总闪对应降水量的平均值为1.92×107 kg·fl-1。依据对流有效位能和抬升指数对雷暴进行分类的分析表明,较强的不稳定状态对应了较小的总闪对应降水量,同时总闪频次和对流降水量的相关性更好。基于雷达特征参数的分类分析表明,总闪对应降水量在对流运动较弱情况下最小,其次是对流运动较强的情况下,而对流运动适中时最大。  相似文献   

7.
统计分析与数值模拟的江苏省沿海地区冬季风场状况显示,近地层风场对海表温度与低层气温的季节性以及短时过程演变都有显著响应。风速场表现为风速自内陆向海上增加,等值线与海岸线走向一致,风速梯度在沿海岸线的近海最强。季节性特征为:夏季低风速频次多,冬季高风速频次多;随着高度的增加,相同等级的大风风速在冬季出现频次明显高于夏季。寒潮入侵时,江苏自北向南气温降温幅度递减,海温响应的演变趋势类似,但降温幅度小。具有冷锋与副冷锋的寒潮降温呈三个阶段:(1) 先缓降后速降,(2) 弱回升,(3) 再次降温。大风伴随降温,风速的明显减弱滞后于气温的速降,随着气温回升风速增大,对应副冷锋的降温风速有二次滞后减弱。当近海SST数值增大后,海上风速极大值区强度减弱。同一纬度上,内陆地区风速增加,近海海域风速减小,大值中心仍处于江苏近海海上。当低层气温温差加大、冷锋强度增强时,气旋式风场的切变线后方的风向由偏西北转为偏北风,整体风场的响应强度增大,大值风速带主要位于江苏沿海中部。   相似文献   

8.
为了正确认识青藏高原山地低层大气风场特征及其对民航机场飞行安全的影响,采用地面测风仪与风廓线仪观测资料,分析研究了藏东南雅鲁藏布江河谷中林芝机场低层风场垂直结构及变化特征。结果表明,林芝机场所在的雅鲁藏布江河谷内,风场以正交于河谷方向的东南风为主,整层风场具有较为一致的日变化和季节变化特征,午后地面和河谷内低层强东南风将对飞机的进近及起降安全产生不利影响;雅鲁藏布江河谷外,风场基本分为两层,低层与高层风场的日变化和季节变化规律差异很大,高层风场是大尺度环流的表现。雅鲁藏布江河谷内风场与河谷外高层大尺度环流间缺乏动力学联系。  相似文献   

9.
利用1979~2015年JTWC(Joint Typhoon Warning Center)最佳路径资料(2001~2015年资料用于台风风圈结构分析)及ERA-interim(0.5°×0.5°)再分析数据,统计分析我国海南岛附近区域(15.5°N~23.5°N,106°E~116°E)热带气旋(Tropical Cyclone,简称TC)低层风场的变化特征。结果表明:(1)年均5.5个TC于4~12月主要以西偏北路径进入该区域,其中海南岛东南侧海域TC出现频率最高且强TC比例最多,而岛西北区域出现频率最低,强TC比例最少。(2)TC中心位于海南岛不同方位时,其外围低层风场分布具有不同的非对称特征,且大风出现比率也各有差异;TC中心位于海南岛上时出现大风比率最高,位于岛南侧时次之,位于岛北侧时最小。(3)该区域TC平均最大风速半径(RMW)为58.3 km;TC位于岛上时RMW最大,而位于岛西南侧最小。(4)TC近中心最大风速由海上向陆地急剧减小,其高值中心主要位于雷州半岛东侧及西侧海域。(5)研究区域内TC的34节风圈半径在TC环流的东侧大而西侧小,强TC大而弱TC小。(6)不同区域TC变形程度有所差异。平均而言,位于岛西南侧TC变形最大而位于岛东南侧时变形最小。  相似文献   

10.
风速剖面是各类工程结构抗风设计的关键参数。为了准确估算近海各类工程建筑结构承受的风荷载作用,通过在对数风剖面中引入大气稳定度函数和拖曳系数来刻画大气层结和海气交换作用对近海风速剖面的影响并建立相应的模型,最后利用强台风"黑格比"(0814号)的实测数据对模型进行了验证。研究结果表明:大气层结和海气交换作用对台风"黑格比"风速剖面有一定的影响,考虑大气层结和海气交换作用的风速剖面较对数剖面更能准确描述台风过程的风速剖面特征。  相似文献   

11.
利用71个气象站1960~2009年共50年的冬季逐日降水、风速和天气现象资料, 以及3个站降水对比观测试验数据, 对东北地区降雪测量记录的风场变形误差进行了评价和订正, 并在此基础上分析了风场变形误差对研究区降雪量变化趋势估算结果的影响。结果如下:1)东北地区冬季降雪量台站观测记录普遍被低估, 全区观测的冬季平均降雪量为15.1 mm, 而风场变形误差订正后冬季平均降雪量为22.5 mm。各站绝对误差介于1.1~19.4 mm, 平均绝对误差为7.5 mm, 各站相对误差介于11.8%~50.8%, 平均相对误差为34.1%。2)主要由于受气象台站观测环境改变导致的风速减弱现象影响, 东北地区大部分台站雨量计对降雪的捕获率有所增加, 冬季降水观测中的风场变形误差减小, 引起实测的降雪量变化趋势估算值被高估。风场变形误差订正前, 东北地区近50年的冬季降雪量变化趋势为0.4 mm·(10 a)-1, 而风场变形误差订正后, 冬季降雪量变化趋势为0.1 mm·(10 a)-1。3)东北南部地区台站受风场变形误差影响尤其明显, 冬季实测的降雪量变化趋势偏高更大, 订正后和订正前趋势差值为-1 mm·(10 a)-1, 即订正前冬季降雪量变化趋势被高估程度达到了64.3%。  相似文献   

12.
云微物理参数化对华北降雪影响的数值模拟   总被引:7,自引:3,他引:7  
对发生在华北地区的一次降雪过程进行了中尺度数值模拟。结果表明,高纬强冷空气南下和低纬倒槽的水汽输送是造成这次长时间降雪过程的主要原因。采用混合方案的中尺度数值模拟表明,这次降雪天气不是对流云造成的,而是稳定性的非对流云降雪。敏感性试验也表明,采用其他积云参数化方案对模拟的降雪量基本没有影响。控制试验模拟的24h降雪量与实际观测比较吻合。模拟结果表明,当采用Dudhia简单冰相方案时,会有过多的云冰、过冷却水及雪;当采用Reisner 1混合相方案时,会有过多的云冰和雪;修改的各个Reisner 2方案对此次降雪的预报改进不大,但各个Reisner 2方案的敏感性试验中云冰混合比、过冷却水混合比和雪混合比稍微有差异。  相似文献   

13.
基于多平台热带气旋表面风场资料(MTCSWA),研究了2007~2016年6~11月西北太平洋上不同尺度热带气旋(TC)的气候统计特征,TC各级风圈半径在不同象限的变化特征、风场结构的对称度及二者与强度变化之间的相关性。利用7级风圈半径与TC近中心最大持续风速(MSW)来定义TC的尺度和强度。结果表明,西北太平洋上TC的平均尺度为221.9 km,其中小TC平均尺度为96.4 km,大TC平均尺度为346.4 km。大TC活动位置的空间分布较小TC更为集中,整体活动范围较小TC偏北。TC尺度的峰值出现在8月和10月。在TC的风场结构中,7级、10级、12级风圈的平均半径分别为221.9、121.0、77.4 km。TC风圈的对称度的统计结果表明7级风圈的对称度最低,12级风圈的对称度最高。相关分析表明,在TC的生命史中,各级风圈半径与其强度存在一定的正相关关系,其中12级风圈半径与强度的相关性最低;对于同一风圈而言,在TC的不同发展阶段中,不同象限的风圈半径与强度的相关性不同。在TC的风场结构中,风圈的对称度与TC强度的相关性随着风圈强度的增强而减弱,只有7级风圈的对称度在TC的整个生命周期中表现出与TC强度之间的弱的正相关关系。  相似文献   

14.
我国北方地区对流层中下层臭氧收支   总被引:1,自引:0,他引:1       下载免费PDF全文
为了揭示我国北方地区对流层中下层臭氧(O3) 的形成机理以及周边地区的污染输送对我国北方地区对流层中下层O3收支的影响, 在与外场观测数据比较分析的基础上, 利用全球化学输送模式(MOZART-2) 采用收支分析方法定量分析了影响我国北方地区对流层中下层O3的各个物理化学过程。结果表明:我国北方地区对流层下层O3最重要的来源是光化学生成作用, 约占总来源的58.3%(41.5 Tg), 光化学生成反应中HO2对于O3生成的贡献最大; 最大的汇是干沉降过程, 约占总汇的43.2%(26.2Tg); 水平净输送作用对我国北方地区对流层中下层O3收支的影响非常大, 在我国北方地区对流层下层, 41.6%左右的O3来自水平净输送, 随高度增加, 水平输送影响增大, 我国北方地区对流层中层大约81.5%的O3来自水平净输送。  相似文献   

15.
利用常规观测、自动站逐时降水量、乌鲁木齐市风廓线雷达及ECMWF1°×1°再分析等资料,对2018年10月17—18日乌鲁木齐雨夹雪转大暴雪过程进行分析。结果表明,大暴雪是在低空西北气流与中高层西南急流叠加并维持的有利环流背景下,由700~850 hPa风切变、风速辐合、地面冷锋及地形强迫抬升等多尺度系统共同作用造成的。强降雪时雷达探测高度维持较高达7500 m,随着降雪结束探测高度明显降低。水平风场表明低空西北急流与中高层偏南急流形成的垂直风切变廓线的维持,是强降雪持续的动力条件。大气折射率结构常数C_n~2、垂直速度的大小与雨雪的开始、结束时间有较好的对应关系,且低层较强偏北风与C_n~2大值区相对应,降雪时低层垂直速度为0.8~1.2 m·s~(-1),雨或雨夹雪时垂直速度为1.8~2.5 m·s~(-1)。因此,水平风向风速、C_n~2和垂直速度的垂直变化对暴雪短临预报有很好的参考价值。  相似文献   

16.
青藏高原北部的大气加热场特征   总被引:12,自引:9,他引:12  
利用五道梁1994-1997年的实际观测资料,结合一些经验计算公式计算得到了1994-1997年青藏高原北部地区的大气加热场强度。结果表明,从4年平均情况来看,高原北部地区4-8月大气加热场为热源,10月-2月为冷源,3月和9月为转换时期;就年平均大气加热场强度年际变化来看,1994年和1995年为大气冷源,1996年和1997年则为大气热源;高原北部的大气加热场强度的年际变化主由地面感热输送的年际变化所决定。  相似文献   

17.
利用北京中国科学院大气物理研究所325 m气象观测塔的气象梯度资料和湍流资料,分析了2014年11月29日至12月5日北京两次大风过程中气象要素和湍流输送特征的变化。第一次大风过程的强度和持续时间均高于第二次大风过程。强烈的风速垂直切变主要集中在距地面100 m高度范围内,最强风速垂直切变达到0.31 s~(-1)。大风过程中,阵风系数呈现随高度减小的趋势,越接近地面,阵风系数愈大。阵风强度的变化与阵风系数相似,100 m以下高度时,阵风强度随高度增大而减小。大风过程自上而下改变边界层结构,平均动能、湍流动能和摩擦速度最先从上层(280 m)发生变化且迅速增加。近地层由于风速垂直梯度的显著差异,近地层垂直方向的湍流强度最大。大风时各功率谱在低频区(0.01 s~(-1))达到峰值,大风过后各高度的能量都有所下降。  相似文献   

18.
基于新疆北部区域(简称北疆)37个代表气象站1961—2019年逐月平均气温资料和NCEP/NCAR再分析环流资料,通过经验正交函数(EOF)分解和相关分析方法,研究北疆近58 a冬季气温季节内变化的时空演变特征及其对应的大气环流特征。结果表明:(1)北疆前冬和后冬气温EOF分解的前两个模态在空间上均表现为全区一致变化型和偏西偏北地区与中东部反相变化型。前冬和后冬气温全区一致型的时间系数与同期500 hPa位势高度场呈显著负相关关系区域位于乌拉尔山附近,气温反相变化型的时间系数与同期500 hPa位势高度场呈显著正相关关系区域位于波罗的海附近。(2)北疆冬季气温季节内主要有前后距平一致和前后距平相反两种特征。在北疆冬季气温前后距平相反年份",前冷后暖"时的500 hPa乌拉尔山高压脊减弱消失,欧洲槽东移加深,东亚大槽强度减弱";前暖后冷"时,500 hPa欧洲槽减弱西退,乌拉尔山地区高度场抬升,东亚大槽加深。(3)前冬偏冷时,后冬偏暖的主要原因来自于500 hPa极涡增强,欧洲槽加深;前冬偏暖时,后冬偏冷的大部分原因是受500 hPa欧亚大陆大片的负变高区影响。  相似文献   

19.
2008年1月南方一次冰冻天气中冻雨区的层结和云物理特征   总被引:4,自引:3,他引:4  
陶玥  史月琴  刘卫国 《大气科学》2012,36(3):507-522
2008年1月中下旬, 我国南方经历了四次历史罕见的冰冻雨雪天气。本文针对2008年1月25~29日的一次典型冻雨天气过程, 在实测资料、NCEP再分析资料综合分析的基础上, 利用中国气象科学研究院 (CAMS) 中尺度云分辨模式对1月28日~29日的冻雨天气过程进行了数值模拟, 研究了冰冻天气形成的大气层结及云系冻雨区云的宏微观结构特征, 初步分析了冻雨形成的云微物理过程及云物理成因。结果表明, 深厚而稳定的逆温层和低空冷层的存在是大范围冻雨出现的直接原因。此次南方冰冻过程中, 湖南和贵州两地冻雨形成的云物理机理不同, 不同冻雨区上空为两种不同类型的云, 对应两种不同的云微物理结构和大气层结结构。湖南冻雨区云层较厚, 云顶温度较低, 属于混合相云, 云中高层存在丰富的冰相粒子 (雪的比含水量最大)。湖南冻雨在 "冷—暖—冷" 层结下, 通过 "冰相融化过程" 形成, 即在锋面之上的对流层中层水汽辐合中心内形成的雪, 从高空落入暖层, 雪融化形成雨, 再下落到冷层后, 形成过冷雨滴, 最后接触到温度低于 0℃的物体或降落到地面上, 迅速冻结形成冻雨。而贵州冻雨区云层较薄, 云顶温度较高, 属于暖云, 中高层基本无冰相粒子, 低层为云水和雨水 (云水的比含水量最大)。贵州冻雨是在 "暖—冷" 层结下通过 "过冷暖雨过程" 形成的。即水汽沿锋面抬升, 在对流层中低层的水汽辐合中心内, 经过冷却凝结成云滴, 通过碰并云滴增长的雨滴下落到低空冷层, 形成的过冷却雨滴直接冻结形成冻雨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号