首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper presents the first chironomid-based climatic reconstruction for the UK Lateglacial, obtained from a lake basin in southeast Scotland, Whitrig Bog. Comparison of chironomid, lithological, geochemical, and pollen data reveals a marked vegetation lag behind the warming following deglaciation; warm-water chironomid taxa (e.g. chironomus) had replaced cold-water chironomid taxa (e.g. Paracladius) prior to the arrival of shrubs and trees and when local soils were still poorly developed. In addition to clear evidence for the Younger Dryas Stadial, chironomid data also reveal two short-term cold episodes that punctuate the Lateglacial Interstadial, both of which are also reflected in pollen and lithological data as reversals from open birch scrub/woodland to open herbaceous tundra coinciding with inwash of minerogenic matter into the basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Late Devensian raised shorelines in Angus and Kincardineshire, Scotland   总被引:1,自引:0,他引:1  
Marine, fluvial and fluvioglacial terraces, and other landforms and deposits associated with them, have been mapped over an area that extends from Dundee to Stonehaven along the coast, and inland in places as far as the Highland edge. All well-defined terraces have been levelled at approximately 50 mintervals along their length. Analysis of the altitude data permits the recognition of eight glacio-isostatically tilted raised shorelines of Late Devensian age, sloping down towards E5S, the lowest at 0.2 m/km and the others at gradients of 0.50-0.85 m/km. Successively lower and less steeply inclined shorelines were formed in close association with a westward-receding ice margin, and there are indications that crustal response to unloading may have been immediate and rapid. Five of the shorelines are correlated with five of the six Late Devensian shorelines recognized by the authors (1966) in eastern Fife, allowing contemporaneous positions of the wasting ice-sheet margin in the two areas to be postulated.  相似文献   

4.
Finlayson, A., Golledge, N., Bradwell, T. & Fabel, D. 2011: Evolution of a Lateglacial mountain icecap in northern Scotland. Boreas, Vol. 40, pp. 536–554. 10.1111/j.1502‐3885.2010.00202.x. ISSN 0300‐9483. Detailed geomorphological mapping of the Beinn Dearg massif, northern Scotland, was conducted to examine the maximum (Younger Dryas) extent, and earlier interstadial evolution, of an icecap that existed during the Lateglacial period (14.7–11.7 cal. ka BP). Landform evidence indicates a plateau icecap configuration during the Younger Dryas. The interpreted age is supported by new cosmogenic exposure ages and previously reported interstadial sediments beyond the icecap margin. The reconstructed Younger Dryas Beinn Dearg icecap covered 176 km2. Equilibrium line altitudes (ELAs) of ~570–580 m were calculated for the icecap as a whole. The empirically reconstructed icecap is compared with recent numerical model simulations. The two methods produce an icecap with a similar configuration; however, differences are apparent in the extent of eastern and western outlets (±1–5 km), and in the spatial variation of ELAs. Results suggest that the numerical simulation overestimates the western and underestimates the eastern icecap extent. We attempt to quantify these differences in terms of icecap mass balance and assess their possible causes. Geomorphological evidence for the pre‐Younger Dryas icecap configuration indicates that the Beinn Dearg massif remained an important source during earlier deglaciation. In contrast, the neighbouring Fannich mountains acted as an ‘unzipping’ zone, and were ice‐free on their northern side by the Allerød (Greenland Interstadial 1c to 1a). Deglaciation continued over the western Beinn Dearg plateau, with the possibility that glaciers remained in some central and eastern catchments prior to (Younger Dryas) icecap (re)growth.  相似文献   

5.
We constrain, in detail, fluctuations of two former ice caps in NW Scotland with multibeam seabed surveys, geomorphological mapping and cosmogenic 10Be isotope analyses. We map a continuous sequence of 40 recessional moraines stretching from ~10 km offshore to the Wester Ross mountains. Surface‐exposure ages from boulders on moraine ridges in Assynt and the Summer Isles region show that substantial, dynamic, ice caps existed in NW Scotland between 13 and 14 ka BP. We interpret this as strong evidence that large active glaciers probably survived throughout the Lateglacial Interstadial, and that during the Older Dryas period (ca. 14 ka BP) ice caps in NW Scotland were thicker and considerably more extensive than in the subsequent Younger Dryas Stadial. By inference, we suggest that Lateglacial ice‐cap oscillations in Scotland reflect the complex interplay between changing temperature and precipitation regimes during this climatically unstable period (ca. 15–11 ka BP). © Natural Environment Research Council (NERC) copyright 2008. Reproduced with the permission of NERC. Published by John Wiley & Sons, Ltd.  相似文献   

6.
Holocene shore displacement and shorelines in Hordaland, western Norway   总被引:2,自引:0,他引:2  
A new shore displacement curve from Fonnes, ca. 50 km NW of Bergen, and a revised curve from Bømlo, ca. 80 km S of Bergen, are presented, based on pollen and phytoplankton analysis of organic sediments in present and ancient lake basins. The transitions between marine and lacustrine sediments have been radiocarbon-dated. The Fonnes and Bømlo curves are closely related and show a rapid regression between 10,000 and 8,700 years B.P., from 30 m above sea level to ca. 4 m above sea level. A transgression took place between 8,500 and 7,200 years B.P. when the shore level rose to ca. 11 m above sea level. Between 7,200 and 6,000 years B.P. the shore level was almost constant, before a slow regression took place. The earlier interpretation of the Tapes transgression including two shore level oscillations at Bømlo is rejected. A method is presented for constructing an equidistant shoreline diagram on the basis of three radiocarbon-dated shore displacement curves from three areas arranged in a triangle (Fonnes, Sotra, Ostereidet). When followed along the projection plane, a working model of the shore displacement curve from Fonnes and an approximation of the change in shoreline gradient during the Holocene indicate that the transgression maximum is metachronous.  相似文献   

7.
Morphological mapping and stratigraphical investigations have identified surface and buried relict marine features in the inner Moray Firth area. The features consist of a buried gravel layer formed during the Loch Lomond Stadial, a buried beach of early Flandrian age, and surface beaches and estuarine flats of mid-late Flandrian age. Analysis of the altitudes of morphological features has identified two buried and five (possibly six) surface glacio-isostatically tilted raised shorelines. The steepest shoreline is associated with the buried gravel layer and slopes down towards N20°E at a gradient of 0.20m/km. Younger shorelines have lower gradients between 0.16–0.03m/km. The shoreline sequence combined with published data defines relative sea-level movements in the area during the last 11000 years. The inner Moray Firth shorelines are correlated with similar features in other areas of Scotland which include the Main Lateglacial, Main Buried and Main Postglacial Shorelines.  相似文献   

8.
Dawson  A.G.  Smith  D.E.  Dawson  S.  Brooks  C.L.  Foster  I.D.L.  Tooley  M.J. 《Geologie en Mijnbouw》1998,77(3-4):225-232
The geomorphic and sedimentological evidence for former sea-level changes in the exposed coastline of western Jura shows a clear coastal response to past changes in climate. In particular the rapid and high-magnitude climate changes associated with the onset and termination of the Younger Dryas appear to have been accompanied by major changes in coastal response. In western Jura, the temperate climate of the Lateglacial Interstadial was associated with beach-ridge deposition, with the earlier part of this period being associated with larger ridges than the latter. By contrast, the cold climate during the Younger Dryas appears to have been dominated by frost processes, sea-ice development and rapid rates of coastal erosion of bedrock. Cold-climate shore erosion of bedrock appears to have ended suddenly at the close of the Younger Dryas.  相似文献   

9.
In 1982 we carried out a shallow-penetration, high-resolution seismic profiling study on the shelf of the southern Argolid, Peloponnesos, Greece, to identify and map the shores of the late Pleistocene and Holocene, and to establish their coastal environments. Portable equipment and a local boat were used. The lowest glacial shore occurs at ?115 to ?118 m, within the range of global values. The subsequent rise across the distinct old land surface left behind many shore features (scaps, beaches and beach ridges, channels and lagoons) now buried under a few meters of post-transgressive deposits. These features cluster at a small number of depths below present sea level, suggesting that the rise of the sea, usually too fast to leave an imprint, was episodically interrupted by brief stillstands or even temporary reversals of climatic or tectonic origin. The clusters can be roughly dated with reference to a global sea-level-rise curve; after 6000 yr B.P. sparse archaeological data establish a local curve. The seismic profiling technique, convenient and not costly, holds promise for the identification of postglacial shores elsewhere prior to sampling for dating. It has wide application for environmental reconstructions of vanished coastal zones as a basis for prehistoric resource assessments. These applications are illustrated with examples from this study.  相似文献   

10.
《Quaternary Science Reviews》2003,22(5-7):453-473
Lateglacial and early Holocene (ca 14–9000 14C yr BP; 15–10,000 cal yr BP) pollen records are used to make vegetation and climate reconstructions that are the basis for inferring mechanisms of past climate change and for validating palaeoclimate model simulations. Therefore, it is important that reconstructions from pollen data are realistic and reliable. Two examples of the need for independent validation of pollen interpretations are considered here. First, Lateglacial-interstadial Betula pollen records in northern Scotland and western Norway have been interpreted frequently as reflecting the presence of tree-birch that has strongly influenced the resulting climate reconstructions. However, no associated tree-birch macrofossils have been found so far, and the local dwarf-shrub or open vegetation reconstructed from macrofossil evidence indicates climates too cold for tree-birch establishment. The low local pollen production resulted in the misleadingly high percentage representation of long-distance tree-birch pollen. Second, in the Minnesotan Lateglacial Picea zone, low pollen percentages from thermophilous deciduous trees could derive either from local occurrences of the tree taxa in the Picea/Larix forest or from long-distance dispersal from areas further south. The regionally consistent occurrence of low pollen percentages, even in sites with local tundra vegetation, and the lack of any corresponding macrofossil records support the hypothesis that the trees were not locally present. Macrofossils in the Picea zone represent tundra vegetation or Picea/Larix forest associated with typically boreal taxa, suggesting it was too cold for most thermophilous deciduous trees to grow. Any long-distance tree pollen is not masked by the low pollen production of tundra and Picea and Larix and therefore it is registered relatively strongly in the percentage pollen spectra.Many Lateglacial pollen assemblages have no recognisable modern analogues and contain high representations of well-dispersed ‘indicator’ taxa such as Betula or Artemisia. The spectra could have been derived from vegetation types that do not occur today, perhaps responding to the different climate that resulted from the different balance of climate forcing functions then. However, the available contemporaneous plant-macrofossil assemblages can be readily interpreted in terms of modern vegetation communities, suggesting that the pollen assemblages could have been influenced by mixing of locally produced pollen with long-distance pollen from remote vegetation types that are then over-represented in situations with low local pollen production. In such situations, it is important to validate the climate reconstructions made from the pollen data with a macrofossil record.  相似文献   

11.
A core, recovered from a water depth of 53 m in Loch Assynt, North-West Scotland, has yielded a 9 m sequence comprising two distinct units, an upper, organic-rich unit (Unit I, ca. 6 m) overlying a sequence of laminated clays, silts and sands (Unit II, ca. 3 m). The upper unit is essentially Holocene in age based upon three bulk AMS radiocarbon dates while a fourth radiocarbon date from Unit II confirms a late-glacial age for that interval and supports a broadly linear age–depth relationship. Distinct variations in the magnetic susceptibility record of the lower unit can be visually correlated to major changes in the Greenland ice core (GISP2), this together with pollen evidence supports the radiocarbon dating suggesting an age of approximately 11,000 to around 17,000 cal. BP for Unit II, with evidence for the Younger Dryas (Loch Lomond) stadial and the Bolling–Allerød climatic phases. Variations in the magnetic susceptibility record of the late-glacial sediments are thought to relate to climatically driven changes in soil cover and erosion rates. The multiproxy record from Loch Assynt indicates relatively continuous, sub-aqueous sedimentation during the last ~17,000 years, providing an approximate age for the initiation of modern Loch Assynt and supporting recent dates of moraine retreat lines in the Loanan Valley from about 14–15 ka BP. Pollen and chironomid sampling provides further insights to the history of this relatively deep water body and compliment existing high-resolution palaeo-precipitation records for the mid to late Holocene interval from speleothem archives within the loch catchment.  相似文献   

12.
Marine, fluvial and fluvioglacial landforms and the deposits associated with them, have been mapped in the inner Moray Firth area. The landforms identified indicate a close association between the decay of the Late Devensian Scottish ice sheet and the formation of raised marine features. Analysis of the altitudes of the marine terraces has identified ten glacio-isostatically tilted raised shorelines of Late Devensian age, sloping down towards N25°E, at progressively lower gradients between 0.57 and 0.15 m/km. The shorelines were formed in close association with a westward- and southward-receding ice margin and the shoreline sequence suggests that rates of ice margin retreat were most rapid where the ice terminated in the sea.  相似文献   

13.
This article is a detailed pollen analysis and accurate AMS chronology of the Lateglacial of two coastal sites in western Norway. The area was deglaciated around 14 600 cal. yr BP or shortly before. The earliest vegetation was open, with a pioneer mosaic of vegetation on mineral soils, including snowbed communities, and plants on wind-blown ridges. Later, more stable vegetation developed with Empetrum as an important constituent. Scattered tree birches were established in the area in the last part of the Bølling/Allerød (GI-1). The pollen record from Vassnestjern indicates three short-lasting cold periods: c . 14 050 to 13 900, 13 800 to 13 700 and 13 150 to 13 000 cal. yr BP. It has been suggested that the last-mentioned period, detected at both sites, corresponds with the Gerzensee/Killarney Oscillation. From about 12 750 cal. yr BP, the vegetation was affected by the Younger Dryas (GS-1) cooling, which caused the vegetation to break up and humus-soil communities to disappear. In the early Holocene, the humus-soil communities re-established and open birch forests developed. This Lateglacial vegetation development is broadly similar to the reconstructed vegetation development in other parts of southwestern Norway.  相似文献   

14.
15.
A pollen analytical investigation of the sediments of Berry Pond, Berkshire County, Massachusetts, has demonstrated a sequence of pollen assemblage zones similar to those detected elsewhere in New England. From about 13,000 to 12,000 yr B.P. the vegetation of the region was treeless, probably tundra. By 11,500 yr tundra had been replaced by open boreal forest. Closed boreal forest became dominant by 10,500 yr. Boreal forests were replaced by mixed coniferous and deciduous forests with much white pine about 9600 yr ago. A “northern hardwoods” complex with much hemlock, beech, and sugar maple succeeded the mixed forests 8600 yr ago. Hemlock declined very rapidly approximately 4800 yr ago and was replaced by birch, oak, beech, ash, and red maple. This decline may have been biologically rather than climatically induced. There is a slight maximum of pine (much of it pitch pine) from 4100 to 2600 yr ago, perhaps indicative of warmer and/or drier conditions. There were slight changes in the forests about 1600 yr ago as chestnut immigrated and spruce and larch increased slightly. European land clearance and subsequent land abandonment are detectable in the uppermost levels.  相似文献   

16.
The chronology of two adjacent Danish Lateglacial sedimentary sequences with well-developed layering of alternating aeolian sand and organic matter has been investigated using both Optically Stimulated Luminescence (OSL) and Accelerator Mass Spectrometry (14C). Both sites are known to cover at least the period Bølling to Younger Dryas, with the so-called older and younger coversand types present at both localities. Typical overall uncertainties with the OSL data are about two to five times those of the 14C ages, but both data sets contain clear outliers. When these are excluded, OSL ages appear to be systematically slightly younger than the 14C ages, by about 10%; possible reasons for this are discussed. The investigation stresses the importance of making several age estimates from any single locality. The older coversand type makes up the pre-Bølling and most, or possibly all, of the Bølling (which also has the highest net accumulation rate). Deposits of the younger coversand type are dominant in layers younger than the Bølling.  相似文献   

17.
18.
19.
《Quaternary Science Reviews》2007,26(15-16):1999-2011
A multi proxy sediment core record on the continental margin off western Svalbard, European Arctic, reflects large climatic and oceanographic oscillations at the Lateglacial–early Holocene transition. Based on studies of planktonic foraminifera, their stable oxygen and carbon isotopic composition and ice rafted debris, we have reconstructed the last 14 cal. ka BP. The period 14–13.5 cal. ka BP was characterized by highly unstable climatic conditions. Short-lived episodes of warming alternated with meltwater pulses and enhanced iceberg rafting. This period correlates to a regional warming of the northern North Atlantic. An overall decrease in meltwater took place during the deglaciation (14–10.8 cal. ka BP). The late Younger Dryas and subsequent transition into the early Holocene is characterized by a reduced flux of planktonic foraminifera and increased iceberg rafting. A major warming took place from 10.8 to 9.7 cal. ka BP, the influence of meltwater ceased and the flux of warm Atlantic Water increased. From 9.7 to 8.8 cal. ka BP, the western Svalbard margin surface waters were significantly warmer than today. This warm period, the thermal maximum, was followed by an abrupt cooling at 8.8. cal. ka BP, caused by an increased influence of Arctic Water from the Arctic Ocean. The results document that the European Arctic was very sensitive to climatic and oceanographic changes at the end of the last glacial and during the Holocene.  相似文献   

20.
The influence of the North Atlantic on the margins of Europe means the region is particularly sensitive to changes in the ocean–atmospheric system. During the Last Glacial–Interglacial Transition (16–8 cal ka bp ) this system was repeatedly disrupted, leading to a series of abrupt and short-lived shifts in climate. Despite much research, the number and magnitude of these ‘centennial-scale’ events is not well understood. To address this, we expand upon investigations at Quoyloo Meadow, Orkney, Scotland, one of the best chronologically constrained palaeoclimate records in northern Britain. By coupling stable isotope and chironomid fossil analyses with existing data, this study identifies multiple phases of centennial-scale disturbance at: c. 14.0, 11.1, 10.8, 10.5, 10.45 and 10.3 cal ka bp , with the events at 14.0 and 10.3 exhibiting a particularly pronounced cold-climate signature. During the Holocene, the strongest response to climate forcing was at c. 10.3–10.0 cal ka bp , expressed as a two-stage drop in mean July temperatures, a shift in pollen spectra indicative of ‘less-stable’ climatic regimes, and a depletion in δ18O values. We interpret this as the first reliably dated incidence of the ‘10.3-ka event’ in the British Isles and consider the wider impact of this climatic reversal in other Holocene records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号