首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In order to prepare the analysis of the forthcoming near-IR surveys (DENIS, 2MASS) and to interpret them in terms of galactic structure and AGB evolution, we present model predictions of AGB distributions in K, in 12m and in (J-K, [12–25]) space, as they will be obtained from these surveys, cross-correlated with IRAS Catalog. The simulations have been made by adding the AGB to the Besançon model.  相似文献   

2.
Data with the 2MASS prototype camera were obtained in a 2.3 sq. deg region in Taurus containing Heiles Cloud 2, a region known from IRAS observations to contain a number of very young solar type stars. Data at 1.25 (J), 1.65 (H), and 2.2 (K s )µm are presented. These data are representative of the type and quality of data expected from the planned near-IR surveys, 2MASS and DENIS. Near-IR surveys will be useful for determining the large scale variation of extinction with clouds, for determining the luminosity function in nearby clouds down to ranges of 0.1–1.0 L, and for finding highly extincted T Tauri stars missed by IRAS because the bulk of their luminosity is emitted shortward of 12µm.  相似文献   

3.
Main results of computations of evolution for massive close binaries (10M +9.4M , 16M +15M , 32M +30M , 64M +60M ) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars — mass exchange — Wolf-Rayet star or blue supergiant plus main sequence star — explosion of the initially more massive star appearing as a supernova event — collapsed or neutron star plus Main-Sequence star, that may be observed as a runaway star — mass exchange leading to X-rays emission — collapsed or neutron star plus WR-star or blue supergiant — second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars.Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries.  相似文献   

4.
On the basis of observational data for the absolute R and relative R/R amplitudes of variations in radius of galactic classical cepheids (55 stars from Balona and Stobie (1979) and 30 stars from Sollazzoet al. (1981)), four kinds of empirical linear relations are obtained: log(P V)–logR, logP–logR, log(P V)–log(R/R), and logP–log(R/R);P, R, and V are the pulsation periods, the mean stellar radii, and the amplitudes of light variations, respectively. Three groups of stars are considered: short-period cepheids (SPC)-with logP1.1; long-period cepheids (LPC)-with logP>1.1; and s-cepheids (sC). Both the R values and the R/R values increase withP andP V, for a given group of variables. A comparison is performed with our results obtained from data in other sources (Kurochkin, 1966; Gieren, 1982; etc.). The investigated relations can be applied for determining R and R/R of galactic classical cepheids, by using their observedP and V. All studied galactic classical cepheids have R/R<0.35, R<10R for SPC and 10R <R60R for LPC. The sC have smaller R and R/R values than other classical cepheids, at the same periods (the difference is about 2 times for R and 1.4–2.8 times for R/R); the studied sC have R/R in the range 0.025–0.075 and R in the range 1–3R (only Y Oph has R8R ).  相似文献   

5.
The eighth list of late-type stars of spectral classes M and C detected on the plates of the First Byurakan Spectral Sky Survey (FBS) in the zone +80 +90° is presented. Of the 79 objects detected, 67 are new discoveries (66 M stars and one carbon star); 16 objects are unidentified IRAS sources. The equatorial coordinates, spectral classes, and magnitudes are given.Translated fromAstrofizika, Vol. 39, No. 4, pp. 523–529, November, 1996.  相似文献   

6.
IRAS has detected 70% of the 66 F, G, K nearby dwarf stars investigated here. The sample included chromospherically active as well as non-active dwarfs. The detected stars show emission at 12 and 25 m. Their 12 m luminosity is in the range 1–13×1030 erg s–1 and it is strongly correlated to the star's total luminosity (L bol).There are indications that some of the stars possess IR emission in excess of that expected from a stellar photosphere.Paper presented at the 11th European Regional Astronomical Meeting of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

7.
Computations of polarization and intensity of radiation from a unit stellar surface area are presented, as well as a study of the numerical characteristics of atmospheres — single-scattering albedo and the initial source function(), which define the polarization behaviour of atmospheres. The radiatively stable models of stellar atmospheres presented by Kuruczet al. (1974) and Kurucz (1979) have been used for calculations. Since the versus optical depth dependence is rather weak, it has been assumed that (=cost. With a fixed effective temperatureT eff maximum values of are characteristic of stars featuring the lowest surface gravity accelerationg. Among stars with radiatively stable atmospheres, maximum values of (=5000 Å) 0.4–0.6 are exhibited by supergiants withT eff=8000–20 000 K. The plot of () is characterized by discontinuities at the boundaries of spectral series for hydrogen and, sometimes, for helium. Maximum are attained in the Lyman region of =912–1200 Å, where can reach the value 0.7–0.9 for supergiants, this value being 0.3 for Main-Sequence stars. For stars withT eff 35 000 K, high values of also are attained for <912 Å. Within the infrared region, is always small because of bremsstrahlung absorption.A rapid growth of the source functionB with < typical for ultraviolet range (within the Wien part of spectrum), together with high values of results in the strong polarization of emission from a unit stellar surface element, sometimes exceeding the values for the case of a pure electron scattering. For longer wavelengths, where the limb-darkening coefficient is smaller, the plane of polarization abruptly turns 90° in the central parts of the visible stellar disk.  相似文献   

8.
By considering the consecutive effects of synchrotron reabsorption, Compton scattering and other kinds of energy losses of relativistic electrons, it may be possibile to form a universal distribution of electrons in the region of reabsorption (synchrotron reactor). This will be either a power law with a power index of the energy spectrumn r=3–5, or a relativistic Maxwell distribution with an electron temperatureT e=4T b(1+), where is the ratio of Compton (or other losses) to synchrotron losses, andT bis the brightness temperature of the radiation. Since the total energy losses of electrons in the reactor is equal to zero, this ensures the continuous existence and accumulation of relativistic electrons in the region of reabsorption and their associated hard scattered radiation. Multiple Compton scattering produces a specific stepped power distribution of scattered radiation by which we can identify the reactor. In the nuclei of quasars W Hand, therefore,n r=3; hence the spectral index of scattered radiation in the corresponding ranges (optical, UV, X- and -ray) is .Consideration of other kinds of losses and gains of energy by electrons can lead to the dependencen =3–5(E) — where (E) may have either positive or negative values—which, in turn, leads to the frequency dependence of the spectral index of scattered radiation = 1 – (), |()| < 1, |(E)| < 1.Within the framework of the model being considered, the physical parameters of the nucleus of quasar 3C 273 are calculated.  相似文献   

9.
We present the tenth list of blue stellar objects of the second part of the First Byurakan Spectral Sky Survey (FBS). The list contains 100 objects in the region+73°+80° and3 h 30 m 18 h 30 m encompassing an area of 355 square degrees. The objects have stellar V magnitude within the limits 12.0–18.5 and B-V colors between–0.77 and+0.37. Of these 100 objects, 80 were discovered for the first time. We give the equatorial coordinates, stellar V magnitude, color index CI, and preliminary classification of the objects on the basis of low-disperion prismatic spectra. For 29 objects we give approximate types, among which 4 are candidates for quasars, 2 for Seyfert galaxies, 1 for superassociation galaxy IC 381, 18 for white dwarfs, and 4 for cataclysmic variables.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

10.
The area preserving mapping x = x + a(yy 3), y = ya(xx3), for 0.3 a 2.0 has been studied to locate approximately the x-axis points bounding almost stable regions. For each value of a, these are fixed points with variational trace just greater than 2.0. Transition to chaos can occur rapidly as a increases (with n/k fixed).  相似文献   

11.
Following our series of works on anisotropic radiation, we analyze the erenkov condition in magnetized plasmas in this paper. We have discovered that the usual erenkov condition cos =1/n isnot satisfied at a far field point in anisotropic media, implying that when a charge is moving in a magnetized plasma, a linear shock wave front does not form. Thus we can calculate the power received at a far field per unit time in such a medium — this quantity could not be evaluated according to previous theory. Numerical examples are presented to show various relevant characteristics of erenkov radiation in model plasmas.  相似文献   

12.
The consequences of a cosmological term varying asS –2 in a spatially isotropic universe with scale factorS and conserved matter tensor are investigated. One finds a perpetually expanding universe with positive and gravitational constantG that increases with time. The hard equation of state 3P>U (U mass-energy density,P scalar pressure) applied to the early universe leads to the expansion lawSt (t cosmic time) which solves the horizon problem with no need of inflation. Also the flatness problem is resolved without inflation. The model does not affect the well known predictions on the cosmic light elements abundance which come from standard big bang cosmology.In the present, matter dominated universe one findsdG/dt=2H/U (H is the Hubble parameter) which is consistent with observations provided <10–57 cm–2. Asymptotically (S) the term equalsGU/2, in agreement with other studies.  相似文献   

13.
The implications of the intrinsic luminosity evolution with cosmological epoch on the value of the density parameter () and evolution of radio sizes of extragalactic radio sources have been considered. It is shown that a power law evolution model of the sortP (1 +z) can be used to contrain the value of . In the presence of a strong luminosity evolution, the model yields an upper limit of 0.5.It is also shown that the angular diameter redshift ( – z) relation for quasars can be interpreted in terms of the assumed luminosity evolution combined with a luminosity-linear size correlation with little or no linear size evolution required. On the other hand, strong linear size evolution is needed to explain the – z data for radio galaxies independent of luminosity.  相似文献   

14.
Comparison of the large-scale density and velocity fields in the local universe shows detailed agreement, strengthening the standard paradigm of the gravitational origin of these structures. Quantitative analysis can determine the cosmological density parameter, , and biasing factor,b; there is virtually no sensitivity in any local analyses to the cosmological constant,. Comparison of the dipole anisotropy of the cosmic microwave background with the acceleration due to theIRAS galaxies puts the linear growth factor in the range 0.6 /b = 0.6 –0.3 +0.7 (95% confidence). A direct comparison of the density and velocity fields of nearby galaxies gives = 1.3 –0.6 +0.7 , and from nonlinear analysis the weaker limit > 0.45 forb > 0.5 (again 95% confidence). A tighter limit, > 0.3 (4–6), is obtained by a reconstruction of the probability distribution function of the initial fluctuations from which the structures observed today arose. The last two methods depend critically on the smooth velocity field determined from the observed velocities of nearby galaxies by thePOTENT method. A new analysis of these velocities, with more than three times the data used to obtain the above quoted results, is now underway and promises to tighten the uncertainties considerably, as well as reduce systematic bias.  相似文献   

15.
We have observed 10 solar bursts during the thermal phase using the Haystack radio telescope at 22 GHz. We show that these high frequency flux observations, when compared with soft X-ray band fluxes, give useful information about the temperature profile in the flare loops. The microwave and X-ray band fluxes provide determinations of the maximum loop temperature, the total emission measure, and the index of the differential emission measure (q(T)/T = cT–1). The special case of an isothermal loop ( = ) has been considered previously by Thomas et al. (1985), and we confirm their diagnostic calculations for the GOES X-ray bands, but find that the flare loops we observed departed significantly from the isothermal regime. Our results ( = 1–3.5) imply that, during the late phases of flares, condensation cooling ( 3.5) competes with radiative cooling ( 1.5). Further, our results appear to be in good agreement with previous deductions from XUV rocket spectra ( 2–3).  相似文献   

16.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

17.
Roy  J. -René 《Solar physics》1977,52(1):53-61
The north-south incidence has been studied of 31 white-light flares observed since 1859 and of 1669 events meeting the criteria for major flares of Dodson and Hedeman (1971) for the period 1955–1974. The asymmetry in favor of the northern hemisphere increases strikingly with the importance of the events. Similarly, magnetically complex sunspot groups (Mt. Wilson classes, and) display a more pronounced asymmetry in favor of the north than non-complex groups for 1962–1970. Contrary to the flare asymmetry, the spottedness asymmetry is independent of the size of sunspots.  相似文献   

18.
On the Dynamics of Weak Stability Boundary Lunar Transfers   总被引:1,自引:1,他引:0  
Recent studies demonstrate that lunar and solar gravitational assists can offer a good reduction of total variation of velocity Vneeded in lunar transfer trajectories. In particular the spacecraft, crossing regions of unstable equilibrium in the Earth—Moon—Sun system, can be guided by the Sun towards the lunar orbit with the energy needed to be captured ballistically by the Moon. The dynamics of these transfers, called weak stability boundary (WSB) transfers, will be studied here in some detail. The crucial Earth—Moon—Sun configurations allowing such transfers will be defined. The Sun's gravitational effect and lunar gravitational capture will be analyzed in terms of variations of the Jacobi constants in the Earth—Sun and Earth—Moon systems. Many examples will be presented, supporting the understanding of the dynamical mechanism of WSB transfers and analytical formulas will be obtained in the case of quasi ballistic captures.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
The photoelectric spectrophotometric scans of the Be stars Gem, Ori, Mon and CMa have been analyzed to find out few stellar parameters. The absolute energy distributions of these stars in the wavelength range 350–750 nm have been given. Their effective temperatures and gravities have been estimated from comparisons with non-LTE model atmospheres. The stars Gem and Mon have been found to have Balmer discontinuities in emission. The excess emission in the region 620–750 nm has been observed for Mon and CMa. The evolutionary aspects of these stars are discussed and their masses have been estimated.  相似文献   

20.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号