首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have studied the velocity field of the blue compact dwarf galaxy Mrk 86 (NGC 2537) using data provided by 14 long-slit optical spectra obtained in 10 different orientations and positions. This kinematical information is complemented with narrow-band ([O  iii ]5007 Å and H α ) and broad-band ( B , V , Gunn r and K ) imaging. The analysis of the galaxy global velocity field suggests that the ionized gas could be distributed in a rotating inclined disc, with projected central angular velocity of Ω=34 km s−1 kpc−1. The comparison between the stellar, H  i and modelled dark matter density profile indicates that the total mass within its optical radius is dominated by the stellar component. Peculiarities observed in its velocity field can be explained by irregularities in the ionized gas distribution or local motions induced by star formation.
Kinematical evidences for two expanding bubbles, Mrk 86–B and Mrk 86–C, are given. They show expanding velocities of 34 and 17 km s−1, H α luminosities of 3×1038 and 1.7×1039 erg s−1, and physical radii of 374 and 120 pc, respectively. The change in the [S  ii ]/H α , [N  ii ]/H α , [O  ii ]/[O  iii ] and [O  iii ]/H β line ratios with the distance to the bubble precursor suggests a diminution in the ionization parameter and, in the case of Mrk 86–B, an enhancement of the shock-excited gas emission. The optical–near-infrared colours of the bubble precursors are characteristic of low‐metallicity star‐forming regions (∼0.2 Z) with burst strengths of about 1 per cent in mass.  相似文献   

2.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

3.
To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1–0 S(1) (2.122-μm) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 μm. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula whereby the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from η  Car, are now being overrun by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around η Car.  相似文献   

4.
A strong emission line at 2.8935 μm discovered by Rubin et al. in an ISO SWS02 spectrum of the Orion Nebula is identified as the     multiplet of O  i . Line formation is due to de-excitation cascades following UV-pumping of high 3So and 3Do terms and occurs in the O  i zone immediately behind the hydrogen ionization front. This cascade mechanism also accounts for permitted O  i triplet lines in the optical spectrum of the Nebula, as shown by Grandi. An escape probability treatment of the O  i cascades accounts for the strength of the λ 2.89-μm line and suggests interesting diagnostic possibilities for the optical lines.  相似文献   

5.
To investigate the kinematics of the neutral material around the Gum nebula, emission from hydroxyl at 1667 MHz was observed at many positions over the region. Fitting models of expanding shells to these data together with previously published molecular line data shows that the diffuse molecular clouds and cometary globules form a single expanding shell centred on G261−2.5. The mean angular radius is 10.5° and its maximum radius is 14°. The models show that the distance range to the expansion centre is from 200 pc to 500 pc.
The path of the runaway O-star ζ Puppis passed within <0.5° of the expansion centre of the neutral shell ∼1.5 Myr ago. The supernova of the erstwhile binary companion of ζ Puppis is the probable origin of the Gum nebula and the swept up expanding neutral shell. The 500-pc distance to the supernova is adopted as the distance to the expansion centre of the neutral shell. At this distance the energy required to produce the observed expansion could have been met with a single supernova. The radii of the front and back faces of the shell are 130 and 70 pc respectively. The front face is expanding faster than the back face, at 14 and 8.5 km s−1 respectively.
The extent of the neutral shell matches the radio continuum and H α emission of the Gum nebula well. The photoionized gas in the nebula is probably primarily ionized by ζ Puppis, which is still within the neutral shell. No evidence was found for the IRAS -Vela shell as a separate expanding shell.  相似文献   

6.
Signatures of warm absorbers are seen in soft X-ray spectra of about half of all type 1 Seyfert galaxies observed and in some quasars and blazars. We use the thermal equilibrium curve to study the influence of the shape of the ionizing continuum, density and the chemical composition of the absorbing gas on the existence and nature of the warm absorbers. We describe circumstances in which a stable warm absorber can exist as a multiphase medium or one with continuous variation in pressure. In particular, we find the following results: (i) the warm absorber exists only if the spectral index of the X-ray power-law ionizing continuum  α > 0.2  and has a multiphase nature if  α∼ 0.8  , which interestingly is the spectral index for most of the observed type 1 Seyfert galaxies; (ii) thermal and ionization states of highly dense warm absorbers are sensitive to their density if the ionizing continuum is sufficiently soft, i.e. dominated by the ultraviolet; (iii) absorbing gas with super-solar metallicity is more likely to have a multiphase nature and (iv) the nature of the warm absorber is significantly influenced by the absence of iron and associated elements which are produced in the later stages of star formation history in Type Ia supernovae.  相似文献   

7.
We present intermediate-resolution HST /STIS spectra of a high-velocity interstellar cloud ( v LSR=+80 km s−1) towards DI 1388, a young star in the Magellanic Bridge located between the Small and Large Magellanic Clouds. The STIS data have a signal-to-noise ratio (S/N) of 20–45 and a spectral resolution of about 6.5 km s−1 (FWHM). The high-velocity cloud absorption is observed in the lines of C  ii , O  i , Si  ii , Si  iii , Si  iv and S  iii . Limits can be placed on the amount of S  ii and Fe  ii absorption that is present. An analysis of the relative abundances derived from the observed species, particularly C  ii and O  i , suggests that this high-velocity gas is warm ( T k∼103–104 K) and predominantly ionized. This hypothesis is supported by the presence of absorption produced by highly ionized species, such as Si  iv . This sightline also intercepts two other high-velocity clouds that produce weak absorption features at v LSR=+113 and +130 km s−1 in the STIS spectra.  相似文献   

8.
We present Australia Telescope Compact Array observations towards six massive star formation regions, which, from their strong 24 GHz continuum emission but no compact 8 GHz continuum emission, appeared good candidates for hypercompact H  ii regions. However, the properties of the ionized gas derived from the 19 to 93 GHz continuum emission and  H70α+ H57α  radio recombination line data show the majority of these sources are, in fact, regions of spatially extended, optically thin free–free emission. These extended sources were missed in the previous 8 GHz observations due to a combination of spatial filtering, poor surface brightness sensitivity and primary beam attenuation.
We consider the implications that a significant number of these extended H  ii regions may have been missed by previous surveys of massive star formation regions. If the original sample of 21 sources is representative of the population as a whole, the fact that six contain previously undetected extended free–free emission suggests a large number of regions have been mis-classified. Rather than being very young objects prior to UCH  ii region formation, they are, in fact, associated with extended H  ii regions and thus significantly older. In addition, inadvertently ignoring a potentially substantial flux contribution (up to ∼0.5 Jy) from free–free emission has implications for dust masses derived from sub-mm flux densities. The large spatial scales probed by single-dish telescopes, which do not suffer from spatial filtering, are particularly susceptible and dust masses may be overestimated by up to a factor of ∼2.  相似文献   

9.
Using deep J -, H - and K S-band observations, we have studied the near-infrared extinction of the Nuclear Bulge, and find significant, complex variations on small physical scales. We have applied a new variable near-infrared colour excess (V-NICE) method to measure the extinction; this method allows for variation in both the extinction law parameter α and the degree of absolute extinction on very small physical scales. We see significant variation in both these parameters on scales of 5 arcsec. In our observed fields, representing a random sample of sight lines to the Nuclear Bulge, we measure α to be  2.64 ± 0.52  , compared to the canonical 'universal' value of 2. Our measured levels of     are similar to previously measured results     ; however, the steeper extinction law results in higher values for   AJ (4.5 ≤ AJ ≤ 10  ) and   AH (1.5 ≤ AH ≤ 6.5  ). Only when the extinction law is allowed to vary on the smallest scales can we recover self-consistent measures of the absolute extinction at each wavelength, allowing accurate reddening corrections for field star photometry in the Nuclear Bulge. The steeper extinction law slope also suggests that previous conversions of near-infrared extinction to   AV   may need to be reconsidered. Finally, we find that the measured values of extinction are significantly dependent on the filter transmission functions of the instrument used to obtain the data. This effect must be taken into account when combining or comparing data from different instruments.  相似文献   

10.
We present ultra-high-resolution (0.35 km s−1 FWHM) observations of the interstellar Ca K line towards seven nearby stars. The spectral resolution was sufficient to resolve the line profiles fully, thereby enabling us to detect hitherto unresolved velocity components, and to obtain accurate measurements of the velocity dispersions ( b values). Absorption components with velocities similar to those expected for the Local Interstellar Cloud (LIC) and the closely associated 'G cloud' were identified towards six of the seven stars. However, in most cases the b values deduced for these components were significantly larger than the b  ≈ 2.2 km s−1 (i.e. T k ≈ 7000 K, v t ≈ 1 km s−1) expected for the LIC, and it is argued that this results from the presence of additional, spectrally unresolved, components having similar velocities and physical conditions. For two stars (δ Vel and α Pav) we detect interstellar components with much smaller b values (1.1 ± 0.3 and 0.8 ± 0.1 km s−1, respectively) than are expected for low-density clouds within the Local Bubble. In the case of the narrow α Pav component, we also find an anomalously large Na  i /Ca  ii column density ratio, which is indicative of a relatively high density. Thus it is possible that, in addition to LIC-type clouds, the local interstellar medium contains a population of previously undetected cooler and denser interstellar clouds.  相似文献   

11.
A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time  ∝ρ2 T α  , where  ρ,  T   and α are the density, temperature and a free parameter, respectively. Given α, a family of self-similar solutions with one parameter η is found in which the central density and pressure evolve as follows:  ρ( x = 0, t ) ∝ ( t c− t )−η/(2−α)  and   P ( x = 0, t ) ∝ ( t c− t )(1−η)/(1−α)  , where t c is the epoch at which the central density becomes infinite. For  η∼ 0  the solution describes the isochoric mode, whereas for  η∼ 1  the solution describes the isobaric mode. The self-similar solutions exist in the range between the two limits; that is, for  0 < η < 1  . No self-similar solution is found for  α > 1  . We compare the obtained self-similar solutions with the results of one-dimensional hydrodynamical simulations. In a converging flow, the results of the numerical simulations agree well with the self-similar solutions in the high-density limit. Our self-similar solutions are applicable to the formation of interstellar clouds (H  i clouds and molecular clouds) by thermal instability.  相似文献   

12.
We present calculations of the dynamics of highly ionized gas (HIG) clouds that are confined by external pressure, and are photoionized by AGN continuum. We focus on the gas that is seen, in absorption, in the X-ray spectrum of many AGN and show that such gas can reach hydrostatic equilibrium under various conditions. The principal conclusion is that the clouds can be accelerated to high velocities by the central X-ray source. The dynamical problem can be reduced to the calculation of a single parameter, the average force multiplier, 〈 M 〉. The typical value of 〈 M 〉 is ∼10 suggesting that radiation pressure acceleration by X-rays is efficient for L / L Edd≳0.1 . The terminal velocity scales with the escape velocity at the base of the flow and can exceed it by a large factor. The typical velocity for a HIG flow that originates at R =1017 cm in a source with L x =1044 erg s−1 is ∼1000 km s−1, i.e. similar to the velocities observed in several X-ray and UV absorption systems.
Highly ionized AGN clouds are driven mainly by bound–free absorption, and bound–bound processes are less important unless the lines are significantly broadened or the column density is very small. Pressure laws that result in constant or outward decreasing ionization parameters are most effective in accelerating the flow.  相似文献   

13.
We use long-slit spectroscopic optical data to derive the properties of the extended emitting gas and the nuclear luminosity of a sample of 18 Seyfert 2 galaxies. From the emission-line luminosities and ratios we derive the density, reddening and mass of the ionized gas as a function of distance up to 2–4 kpc from the nucleus. Taking into account the geometric dilution of the nuclear radiation, we derive the radial distribution of covering factors and the minimum rate of ionizing photons emitted by the nuclear source. This number is an order of magnitude larger than that obtained from the rate of ionizing photons 'intercepted' by the gas and measured from the Hα luminosity. A calibration is proposed to recover this number from the observed luminosity. The He  ii λ4686/Hβ line ratio was used to calculate the slope of the ionizing spectral energy distribution (SED), which in combination with the number of ionizing photons allows the calculation of the hard X-ray luminosities. These luminosities are consistent with those derived from X-ray spectra in the eight cases for which such data are available and recover the intrinsic X-ray emission in Compton-thick cases. Our method can thus provide reliable estimates of the X-ray fluxes in Seyfert 2 galaxies for the cases where it is not readily available. We also use the ionizing SED and luminosity to predict the infrared luminosity under the assumption that it is dominated by reprocessed radiation from a dusty torus, and find a good agreement with the observed IRAS luminosities.  相似文献   

14.
We demonstrate that a wide range of molecular hydrogen excitation can be observed in protostellar outflows at wavelengths in excess of 5 μm. Cold H2 in DR 21 is detected through the pure rotational transitions in the ground vibrational level (0–0). Hot H2 is detected in pure rotational transitions within higher vibrational levels (1–1, 1–2, etc.). Although this emission is relatively weak, we have detected two 1–1 lines in the DR 21 outflow with the ISO SWS instrument. We thus investigate molecular excitation over energy levels corresponding to the temperature range 1015–15 722 K, without the uncertainty introduced by differential extinction when employing near-infrared data.
This gas is thermally excited. We uncover a rather low H2 excitation in the DR 21 West Peak. The line emission cannot be produced from single C-shocks or J-shocks; a range of shock strengths is required. This suggests that bow shocks and/or bow-generated supersonic turbulence is responsible. We are able to distinguish this shock-excited gas from the fluoresced gas detected in the K band, providing support for the dual-excitation model of Fernandes, Brand & Burton.  相似文献   

15.
We present near-infrared emission-line images of the circumnuclear ring in NGC 1068. We have measured the Brγ fluxes in a number of star-forming complexes and derived the extinction for each of these by comparison with Hα. We investigate the star-forming histories of these regions and find that a short burst of star formation occurred coevally throughout the ring within the last 30–40 Myr, and perhaps as recently as 4–7 Myr ago. The 1–0 S(1) flux and S(1)/Brγ ratios indicate that as well as fluorescence, shock-excited H2 emission contributes to the total flux. There is excess H2 flux to the north-west where the ionization cone crosses the ring, and we show that it is possible that the non-stellar continuum from the Seyfert nucleus which produces the high-excitation lines could also be causing fluorescence at the edges of molecular clouds in the ring. The nuclear 1–0 S(1) is more extended than previously realized but only along the bar's major axis, and we consider mechanisms for its excitation.  相似文献   

16.
We present optical and near-infrared images and spectroscopy together with submillimetre images of the candidate FU Orionis pre-main-sequence star PP 13S. A comparison of historical plates with our new images shows that PP 13S has dimmed and changed optical morphology significantly over the last half-century. In addition, its optical spectrum has undergone dramatic changes over a period of 18 yr from one dominated by strong continuum emission to one showing only ionized, shock-excited emission lines. The current association with several features indicative of both accretion and outflow suggests that, within the last few hundred years, PP 13S passed through an elevated emission state characteristic of the high-accretion events of known FU Orionis-type stars, and has since declined, over the last few decades, to a more quiescent state. The result of the outburst may well have been the formation of the shock-excited Herbig–Haro jet seen to extend from the obscured young star.
We additionally see significant morphological evolution of the source PP 13N . Its apparent association with a Herbig–Haro flow suggests that it also is actively accreting and driving a bipolar outflow.  相似文献   

17.
We present a survey of molecular gas in theJ = 1 → 0 transition of12CO towards the IRAS Vela Shell. The shell, previously identified from IRAS maps, is a ring-like structure seen in the region of the Gum Nebula. We confirm the presence of molecular gas associated with some of the infrared point sources seen along the shell. We have studied the morphology and kinematics of the gas and conclude that the shell is expanding at the rate of ~ 13 km s-1 from a common center. We go on to include in this study the Southern Dark Clouds seen in the region. The distribution and motion of these objects firmly identify them as being part of the shell of molecular gas. Estimates of the mass of gas involved in this expansion reveal that the shell is a massive object comparable to a GMC. From the expansion and various other signatures like the presence of bright-rimmed clouds with head-tail morphology, clumpy distribution of the gas etc., we conjecture that the molecular gas we have detected is the remnant of a GMC in the process of being disrupted and swept outwards through the influence of a central OB association, itself born of the parent cloud.  相似文献   

18.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

19.
We present chemical abundance measurements from medium-resolution observations of eight subdamped Lyα (sub-DLA) absorber and two strong Lyman-limit systems at   z ≲ 1.5  observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the 6.5-m Magellan II Clay telescope. These observations were taken as part of an ongoing project to determine abundances in   z abs≲ 1.5  quasar absorption line systems focusing on sub-DLA systems. These observations increase the sample of Zn measurements in   z abs≲ 1.5  sub-DLAs by ∼50 per cent. Lines of Mg  i , Mg  ii , Al  ii , Al  iii , Ca  ii , Mn  ii , Fe  ii and Zn  ii were detected and column densities were determined. Zn  ii , a relatively undepleted element and tracer of the gas-phase metallicity is detected in two of these systems, with  [Zn/H]=−0.05 ± 0.12  and  [Zn/H] > +0.86  . The latter one is however a weak system with   N H  I < 18.8  , and therefore may need significant ionization corrections to the abundances. Fe  ii lines were detected in all systems, with an average Fe abundance of  〈[Fe/H]〉=−0.68  , higher than typical Fe abundances for DLA systems at these redshifts. This high mean [Fe/H] could be due to less depletion of Fe on to dust grains, or to higher abundances in these systems. We also discuss the relative abundances in these absorbers. The systems with high metallicity show high ratios of [Mn/Fe] and [Zn/Fe], as seen previously in another sub-DLA. These higher values of [Mn/Fe] could be a result of heavy depletion of Fe on to grains, unmixed gas, or an intrinsically non-solar abundance pattern. Based on cloudy modelling, we do not expect ionization effects to cause this phenomenon.  相似文献   

20.
We have undertaken echelle spectroscopy and narrow-band line imaging of the bipolar planetary nebula M 1-8. This has permitted us to map the outflow in [N  ii ]λλ 6548+6583 Å, Hα, and in the v = 1–0 S(1) transition of H2 at λ 2.122 μm. It has also permitted us to acquire high-resolution spectra for [N  ii ]λ 6583 Å, Hα and He  ii λ 6560 Å. Our observations support the results of a previous 2MASS analysis by two of the authors (J. P. Phillips and G. Ramos-Larios), and confirm that there is strong H2 emission outside of the ionized zone, as well as along the major axis of the outflow. Finally, we have investigated the spatial structure of the outflow in low and high excitation lines, and noted evidence for strong ionization stratification within the envelope of the source. We also note that major axis spectra show asymmetries attributable to outflow along the lobes, oriented at an angle i ∼ 35°–40° to the line of sight. Asymmetries along the minor axis, by contrast, appear to be associated with the central collimating disc, and may be interpretable in terms of asymmetries in disc structure, or rotation at an angular velocity of Ω∼ 1.4 10−12 rad s−1. If the disc arises due to common-envelope evolution, then it seems that angular momentum constraints must be relatively tight, and can only be satisfied given fairly extreme physical assumptions (such as low disc mass, high primary star mass, a low distance to the source and so forth).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号