首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-Cambrian Geology of an area of about 14 sq. miles has been investigated in this paper. The oldest rock is a very small patch of serpentinite, tentatively correlated with the huge ultrabasic body at Jojohatu, some 10 miles north. Granite and Newer dolerite are intrusive rocks of the area. Kolhan series, resting unconformably on Granite and showing facies variation from basal sandstone conglomerate to phyllitic shale through sandstone and impersistent limestone in a thickness of only a few tens of metres, is a shallow epicontinental deposit. Kolhan sandstone, rich in hematitic cement, is an argillaceous orthoquartzite practically devoid of feldspar and is very poor in heavy and accessory minerals. It is richly current bedded, immature, bimodal, fine grained, positively skewed and well sorted. Kolhan limestone is recrystallized micrite, its lower horizon is mostly high grade and contains pink calcite and quartz crystals in cavities. Its upper horizon is low grade, phyllitic and argillaceous and is partly metasomatic and exhibits contemporaneous deformation structures like hassock bedding and slickenside (slickolites?). Kolhan phyllitic shale exhibits effects of Singhbhum orogeny in development of cleavage and crumpling of foliation. Dirty green vug quartz contains abundant oriented microscopic chlorite inclusions. Non-metallic and metallic mineralization in Kolhans is represented by limestones, and local hematite-molybdenite and iron-rich manganese ore respectively.  相似文献   

2.
The Singhbhum Mobile Belt (SMB) of the eastern Indian shield represents a roughly east-west-trending arcuate belt of folded supracrustals overlying the granite-greenstone basement of the Singhbhum-Orissa Craton along its northern, eastern and western margins and is bounded by the Chotanagpur Gneissic Complex to further north. The radiometric ages of the basement Singhbhum and equivalent granites and the intrusive anorogenic Mayurbhanj granite pluton constrain the time of evolution of this mobile belt between 3.12 and 3.09 Ga. Hence, the SMB supracrustals also known as Singhbhum Group, is late Mesoarchaean in age and not Proterozoic as thought earlier. The evolution of the SMB was followed by emplacement of some major basic igneous rocks within or adjacent to the supracrustals. These include Simlipal volcanics at >3.09 Ga on the SMB, Mayurbhanj gabbro along with Mayurbhanj granite at 3.09 Ga along the marginal part of the craton near the SMB, and the Dalma volcanics on the SMB along with the Dhanjori volcanics adjacent to SMB at 2.80 Ga. The 2.80 Ga old basic volcanics is also associated with emplacement of some small granite plutons occurring along the marginal part of the craton, one of them, the Tamperkola granite intrudes the SMB. The >3.09 Ga onward igneous activities along the marginal part of Singhbhum-Orissa Craton took place essentially under anorogenic tectonic setting before being affected by a major metamorphism at 2.50 Ga, which is recorded on the Dalma volcanics and on some small granite pluton occurs along the marginal part of the craton. The Jagannathpur and stratigraphically equivalent Malangtoli volcanics, occurring within the Singhbhum-Orissa Craton at the west, were erupted at 2.25 Ga. The boundary between the SMB supracrustals and the Singhbhum-Orissa Craton is demarked by a prominent shear zone known as the Singhbhum Shear Zone, which shows multiple reactivation, the oldest being at 3.09 Ga, followed by subsequent reactivation during Palaeo- and Mesoproterozoic periods at 2.2, 1.8, 1.6-1.5, 1.4 and 1.0 Ga respectively. The Singhbhum Group and the adjacent Chotanagpur Gneissic Complex appear to have evolved from a near shore syn-rift and a distal post-rift stable shelf sedimentary assemblages respectively, which were deposited without any stratigraphic break in a marine basin existed in the present north of the Singhbhum-Orissa Craton. Both of these assemblages were deformed and metamorphosed together during Proterozoic at 2.5 to >2.3 Ga, 1.6 Ga and 1.0 Ga.  相似文献   

3.
A suprasubduction zone oceanic back-arc setting for the Paleoproterozoic Kandra ophiolite complex (KOC) in southern India has been suggested from geochemical signatures. The telescoped segments of thin deformed sedimentary successions of shallow marine to pelagic affinity, overlying a basaltic substrate and preserved within thrust slices of the KOC, are tectonically juxtaposed against the Eastern Dharwar craton margin. In the northern thrust slice (Kandra village succession), about 150 m of sedimentary strata show intercalation of quartz arenite and basaltic flow in the lower part, grading upwards to heterolithic sandstone-mudstone deposited above the storm wave base. In the southeastern part of the KOC (Gurramkonda succession), deep-water greywacke turbidite, pelagic chert, mafic tuff and volcaniclastics, and quartz arenite deposited below the storm wave base, are preserved as thrust bound packets. Intermittent basaltic outpourings punctuated deeper water deposition as evidenced by alternate metachert and metabasalt layers, and emplacement of basaltic rocks along small thrusts which transpose stratification. Craton margin sediments consists of immature, coarse terrigenous clastics intercalated with thin mafic tuff, suggesting influence of mass flow processes giving way to fluvial sedimentation in the lower part of the Udaigiri Group. Further up, fine grained plane laminated siltstone-shale with rippled sandstone lenses grade upward to compositionally mature quartz arenite deposited close to the craton margin, with signatures of tidal- and wave reworking. The association of stratigraphic successions of two contrasting depositional environments in the KOC adds to the spectrum of variation of sedimentary collage of the ocean plate stratigraphy. The Kandra village and Gurramkonda successions of the KOC, possibly represent ancient arc-trench milieu, and shallower part of oceanic marginal basin respectively. Paleoproterozoic subduction-accretion process led to collapse of these basins and tectonic emplacement of the KOC against the Eastern Dharwar craton margin which hosted near shore sedimentary succession of the Udaigiri Group, occurring west of the KOC.  相似文献   

4.
Reappraisal of field relationships between the different lithological ensembles supported by available geochronological data, and taking due note of the tectono-metamorphic, magmatic and sedimentation history helped to build up a coherent crustal evolutionary history of the Singhbhum Archaean craton, eastern India. The evolution of the earliest sialic crust, as the isotope ages suggest, was around 3700 Ma or even earlier. Deposition of the oldest, dominantly metasedimentary supracrustals, the Older Metamorphic Group (OMG), was initiated at around 3380 Ma, i.e. after a gap of about 320 million years. The closing of OMG basins synchronously with the emplacement of a granitoid phase was at ca.3285 Ma. No other fabric-forming ductile deformation and metamorphism associated with the development of foliation and mineral lineation is known in the rocks of the Singhbhum Archaean craton subsequent to this event. Formation of the succeeding geological ensembles including the deposition of BIF-bearing Iron Ore Group (IOG) and the emplacement of the post-IOG granitoids at ca.3100 Ma can be described as ??lsnon-orogenic?? event taking place during the phase of tectonic quiescence. Supracrustals like the Dhanjori and Simlipal mafic volcanics with intercalated beds of arenite evolved later during the phase of Plume outburst at around 2800 Ma. The end-Archaean intrusion of Newer Dolerite dykes in conjugate sets and the deposition of Kolhan Group in an N-S oriented basin during an E-W stress system mark the culmination of the Archaean crust-building activity in the Singhbhum Archaean craton.  相似文献   

5.
Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons.The understanding of how and where this process took place is significant to evaluate the architecture of continents.The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences.The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites.In the present study,we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton.The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix.Based on modal compositions and major element ratios,these quartzites are categorized as quartz arenite and sub-lithic arenites.Trace element abundances normalized to Archean Upper Continental Crust(AUCC)display positive anomalies at U,Zr,Hf and negative anomalies at Nb.REE patterns are characterized by negative Eu anomalies(Eu/Eu*=0.47–0.97)and flat HREE suggesting felsic provenance.These quartzites show depletion of LILE,enrichment of HFSE and transition metals relative to AUCC.High weathering indices such as CIA,PIA,and ICV are suggestive of moderate to intense chemical weathering.Low trace element ratios such as Th/Cr,Th/Sc,La/Sc,La/Co and Th/Co indicate a predominantly felsic source for these rocks.The overall geochemical signatures indicate passive margin deposition for these quartzites.Detrital zircons from the Simlipal quartzites yield U–Pb ages 3156±31 Ma suggesting Mesoarchean crustal heritage.The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton.These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III)provenance for these quartzites,thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.  相似文献   

6.
About seven hundred gravity stations were established 2–3 miles apart over the Precambrian terrain of Singhbhum that lies between latitude 22° 15′ to 23°°15′N and longitude 85° to 87°E. Bouguer anomalies ranging from +4 to −62 mGal are found in the area. The observed Bouguer anomaly map was analyzed into regional and residual components. The residual anomaly map shows an excellent correlation with geology. The Singhbhum granite batholith is associated with several gravity lows. The residual anomaly map outlines nine plutonic granitic masses within the Singhbhum batholith. Negative residuals are also observed over some intrusive granites outside the batholith. Residual gravity highs are noted over the Dalma hill as well as over the Dhanjori lava complex on the eastern part of the Singhbhum batholith.Two-dimensional models suggestive of subsurface configuration of several major geologic units in the area are presented. These indicate that some of the plutonic granites within the Singhbhum batholith are of relatively large dimensions. The basin containing the Iron Ore Group of rocks to the west of the batholith, as well as the basin containing Singhbhum Group of rocks outside the Copper Belt thrust, may have sedimentary thicknesses of the order of 6–7 km. The Dalma lavas attain their maximum thickness of about 2.5 km in the form of a syncline, underneath which the Singhbhum Group of rocks is also found to be the thickest. The Copper Belt thrust, a major Precambrian fracture around the Singhbhum batholith, is moderately north-dipping near the surface but possibly attains a steeper slope at depth. The thrust appears to be quite deep seated. A threedimensional computer-based model for the Dhanjori lava—gabbro complex on the eastern part of the Singhbhum batholith has been deduced. Maximum thickness of these basic rocks is found to exist underneath a thin cap of granophyre. The geological implication of these results is discussed.Variation in the regional anomalies seems to be attributable to a mass deficiency under the Singhbhum batholith. The batholith may extend subsurfacially towards the north across the Copper Belt thrust. The northern tip of the batholith probably became dissected along the line of intersection of the two orogenic trends in the area and subsided. Over this subsided part, the Singhbhum Group of rocks was deposited at a later stage. Gravity data suggest a fairly large amount of subsidence in the area.  相似文献   

7.
The study deals with the depositional environment of Jumara Dome sediments. The Jumara Dome is an important outcrop of Bathonian to Oxfordian sediments amongst the Kachchh Mainland exposures. On the basis of facies analysis three associations have been documented, namely, G-1 consisting of low energy facies comprising of cross-bedded sandstone, massive sandstone, grey shale and thin bedded sandstone, bioclastic — lithoclastic grainstone, bioclastic — lithoclastic packstone, microbioclastic packstone/wackestone, bioturbated laminated wackestone to mudstone and pelagic lime mudstone; G-II consisting of moderate energy facies comprising of laminated sandstone and grapestone or agglutinated grainstone; G-III consisting of high energy facies comprising of interbedded gypsiferous shale and sandstone/siltstone, oolitic grainstone to conglomerate and bioclastic grainstone. The facies associations reflect an ideal shallowing upward sequence representing slope, bioclast bar, lagoon and inner shelf. Presence of wide range of facies indicates that the rocks of the studied area were deposited during the fluctuating sea level, interrupted by the storms, in the shallow marine environment.  相似文献   

8.
The Neoproterozoic Purana succession in the eastern part of Chattisgarh basin around Sarangarh has been classified into a conglomerate-sandstone-shale dominated proximal assemblage, and a lithographic limestone-shale dominated distal assemblage. The proximal assemblage constitutes the Chandarpur Group, and unconformably overlies the Archean crystalline basement complex. The Chandarpur succession has been classified into three formations that were deposited in fan-fan delta, deep water prodelta and storm- tide dominated prograding shelf environments. The distal assemblage, the Raipur Group, conformably overlies the Chandarpur Group, and may be subdivided into two shale-dominated formations separated by a limestone-dominated formation. The limestone sequence, the Sarangarh Limestone, comprises a lower member of mixed carbonate-siliciclastic succession deposited in a storm dominated shallow water platform, and an upper member of pelagic limestone that grades upward into a deep water shale, the Gunderdehi Shale. The rapid transition from shallow water platformal succession to deep-water pelagic limestone and shale points to abrupt deepening of the basin and drowning of the craton. The peak of transgression is represented by a persistent horizon of black limestone, a product of basin wide anoxia. Disposition of facies belts in proximal and distal assemblages and palaeocurrent directions measured from different facies belts point to a north-northwesterly palaeoslope of the basin. Signatures of intense storm and tidal currents in different litho-units collectively point to an open marine circulation condition. It has been inferred that the basin was connected to a major seaway that skirted the northern and north-western margin of the craton. Development of thick fan-delta sequence at the base of the succession, occurrence of felsic welded tuff within the Gunderdehi Shale, thick sandstone-mudstone cyclothems in the Chandarpur Group, and abrupt drowning of the carbonate platform leading to pelagic sedimentation collectively point to major tectonic control on basin evolution. The basin developed as a cratonic rift and evolved into a deeply subsiding one, without any major stratigraphic hiatus, through episodic tectonic pulses.  相似文献   

9.
华北克拉通古元古代地层划分与对比   总被引:2,自引:2,他引:0  
华北克拉通古元古代地层分布广泛,主要集中于胶辽吉带、中部带和西部孔兹岩带三个带状区域。近年来华北克拉通古元古代地层研究取得了很大的进展,根据作者的研究和前人的大量工作,本文对华北克拉通主要的古元古代地层的组成、时代、形成的构造背景等进行了总结。发现华北克拉通古元古代底部2.47~2.35Ga间的地层普遍缺失,反映了华北克拉通地质演化历史上的一个静寂时期。~2.3Ga在华北克拉通中条山及鲁山等地发育了少量的冷口变质火山岩以及上太华岩群变质地层。大量的年代学资料表明华北克拉通以往认为时代大致始于2.5Ga的滹沱群、甘陶河群、辽河岩群、绛县群、中条群等众多地层实际年龄多集中在2.2~1.9Ga之间,而且大多数地区所划分的不同的古元古代地层在时间上是并置或叠合的,没有新老或上下关系,仅在中条山地区和五台地区的古元古代地层具有从老到新连续演化的特征。目前,古元古代早期2.4~2.3Ga的地层研究程度还不高,形成的构造背景存在岛弧和裂谷两种不同的认识,我们倾向于活动大陆边缘环境,推测在鲁山-华山-中条山-吕梁山一带存在古元古代早期的岛弧与活动大陆边缘的相互作用。2.2~1.9Ga这一阶段的地层除孔兹岩系外,通常为变质火山-沉积岩系,且火山岩基本都具有双峰式火山岩特征,表明它们应该形成于伸展环境,但对伸展的机制还存在裂谷与弧后盆地的争议,根据作者等的工作本文倾向于它们形成于陆内裂谷环境,反映了华北克拉通可能从2.2Ga开始经历了强烈的伸展活动,最终导致了原有基底的裂解。  相似文献   

10.
中国南方志留系底部优质烃源岩发育的构造-环境模式   总被引:6,自引:0,他引:6  
我们对宜昌王家湾和张家界三家馆两个剖面的上奥陶统-下志留统剖面的有机碳丰度、有机碳同位素、以及磷和硫元素进行了测定,并结合区域构造背景分析了有机质生产、聚集、保存的有利条件.研究表明,对于下志留统烃源岩而言,对有机质生产的主要贡献来自光合作用,所生成的有机质聚集在陆缘洼地型活动大陆边缘的分隔性盆地中,其有利保存的缺氧条件与冈瓦纳大陆北缘的区域性的缺氧有关.我们认为,扬子克拉通的志留系底部烃源岩与北非的"hot shale"一样,有很大的勘探前景.  相似文献   

11.
吴新伟  徐仲元 《岩石学报》2016,32(9):2901-2911
色尔腾山岩群是华北克拉通西部陆块阴山地块早前寒武纪变质基底的主要组成部分,对探讨华北克拉通早前寒武纪基底构造演化有着十分重要的意义。本文根据对营盘湾-东五分子一带的色尔腾山岩群的地质填图、剖面测量、地球化学分析和SHRIMP测年,对色尔腾山岩群的组成、原岩建造、形成环境和形成时代进行了讨论。认为色尔腾山岩群由陈三沟岩组、柳树沟岩组和东五分子岩组组成,陈三沟岩组由灰黑色细粒斜长角闪岩、浅灰色细粒黑云斜长片麻岩夹角闪斜长片麻岩组成;东五分子岩组下段由细粒含石英黑云斜长角闪岩、黑云角闪斜长片麻岩、黑云斜长片麻岩呈韵律产出,顶部为灰白色细粒黑云斜长片麻岩夹薄层磁铁黑云斜长片麻岩,上段为由细粒黑云角闪片岩与浅肉红色黑云长英片麻岩互层,顶部有薄层白色透闪石大理岩;柳树沟岩组以角闪片岩、二云母片岩、二云石英片岩、石榴黑云片岩、黑云母片岩为特征。其原岩总体构成表现为:下部以火山岩为主,上部以碎屑沉积岩和化学沉积岩为主的火山-碎屑沉积建造。火山岩明显富碱,其中酸性火山岩明显富铝、贫镁;具有较高的大离子亲石元素含量、较低的Y和重稀土元素含量;具有轻稀土富集、重稀土亏损的稀土分布形式。地球化学特征与埃达克岩类似,形成于活动大陆边缘的构造环境下。通过对东五分子岩组上部互层产出的细粒长英片麻岩和黑云母片岩分别取样,进行锆石U-Pb SHRIMP测年,分别获得1980±9Ma、1946±16Ma的成岩年龄和1901±15Ma、1893±66Ma的变质年龄。综上所述可以得出,色尔腾山岩群的形成于1.95~1.98Ga之间,是在类似埃达克岩的活动大陆边缘岛弧环境下沉积的,在1.9Ga左右发生碰撞造山而发生变质。  相似文献   

12.
The Archean Wyoming Craton is flanked on the south and east by belts of Paleoproterozoic supracrustal successions whose correlation is complicated by lack of geochronologic constraints and continuous outcrop. However, carbonate units in these successions may be correlated by integrating carbon isotope stratigraphy with lithostratigraphy. The 10 km thick Paleoproterozoic Snowy Pass Supergroup in the Medicine Bow Mountains was deposited on the present-day southern flank of the Wyoming Craton; it contains three discrete levels of glacial diamictite correlative with those in the Huronian Supergroup, on the southern margin of the Superior Craton. The Nash Fork Formation of the upper Snowy Pass Supergroup is significantly younger than the uppermost diamictite and was deposited after the end of the Paleoproterozoic glacial epoch. Carbonates at the base of the Nash Fork Formation record remarkable 13C-enrichment, up to +28‰ (V-PDB), whereas those from overlying members of the lower Nash Fork Formation have δ13C values between +6 and +8‰. Carbonates from the upper Nash Fork Formation above the carbonaceous shale have carbon isotope values ranging between 0 and +2.5‰. The transition from high carbon isotope values to those near 0‰ in the Nash Fork Formation is similar to that at the end of the ca. 2.2–2.1 Ga carbon isotope excursion in Fennoscandia. This chemostratigraphic trend and deposition of BIFs, Mn-rich lithologies, carbonaceous shales and phosphorites at the end of the global ca. 2.2–2.1 Ga carbon isotope excursion are likely related to ocean overturn associated with the final breakup of the Kenorland supercontinent. Correlative carbonates from the Slaughterhouse Formation in the Sierra Madre, WY, and from the Whalen Group in the Rawhide Creek area in the Hartville Uplift, WY, have highly positive carbon isotope values. In contrast, carbonates from other exposures of the Whalen Group in the Hartville Uplift and all carbonate units in the Black Hills, SD, have carbon isotope values close to 0‰. Combined with existing geochronologic and stratigraphic constraints, these data suggest that the Slaughterhouse Formation and the succession exposed in the Rawhide Creek area of the Hartville Uplift are correlative with the lower and middle Nash Fork Formation and were deposited during the ca. 2.2–2.1 Ga carbon isotope excursion. The Estes and Roberts Draw formations in the Black Hills and carbonates from other exposures in the Hartville Uplift postdate the ca. 2.2–2.1 Ga positive carbon isotope excursion and are most likely correlative with the upper Nash Fork Formation. The passive margin, on which the carbonates with highly positive carbon isotope values were deposited, extended around the southern flank of the Wyoming Craton through the Sierra Madre, Medicine Bow Mountains and Hartville Uplift. The presence of carbonates with carbon isotope values close to 0‰ in the upper Nash Fork Formation and the Whalen Group indicates that the passive margin persisted on the southern flank of the Wyoming Craton after the carbon isotope excursion. Rifting in the Black Hills, likely related to the final breakup of the Kenorland, succeeded the carbon isotope excursion, since the Estes and Roberts Draw formations, deposited during rifting and ocean opening on the eastern flank of the Wyoming Craton, postdate the carbon isotope excursion.  相似文献   

13.
沉积型碳酸锰矿床多被认为沉积于水体较深、局限且较还原的沉积环境,特别是黑色页岩型碳酸锰矿床。在扬子北缘城口地区,埃迪卡拉系陡山沱组顶部黑色页岩中也发育碳酸锰沉积,黑色页岩及锰矿石Ce元素异常被认为是指示沉积环境的关键证据,但缺乏系统的沉积学证据,其沉积环境还存在争议。本次研究通过野外剖面、钻井岩心观察和室内薄片观察,详细描述了城口地区陡山沱组碳酸锰岩石的沉积结构、构造特征,对其展开了详细的沉积学研究,确定了其沉积环境并建立了沉积模式。研究表明,城口锰矿是典型的微生物岩沉积,菱锰矿以层状构造为主,内部发育叠层石、核形石、树形石以及凝块石。其中,核形石菱锰矿常黏结生长,菱锰矿微观特征记录了凝块状、球粒状、丝状、管状、纤维状以及放射状等微生物岩微结构。关键钻孔岩心沉积记录显示,研究区陡山沱组菱锰矿与胶磷矿交互沉积,菱锰矿中发育各种微生物岩旋回沉积,少见正粒序层理,内部偶有记录代表水动力变强的内碎屑层,而胶磷矿以强水动力内碎屑沉积为特征,常发育于菱锰矿上部,显示含锰岩系—含磷岩系旋回沉积特征,揭示陡山沱组末期城口地区沉积水体逐渐变浅的特征。结合区域陡山沱组地层沉积特征,认为扬子北缘城口地区陡山沱组1段为缺失盖帽的无障壁海岸沉积,陡山沱组2段是具有混积特征的碳酸盐岩缓坡沉积,微生物岩型菱锰矿主要发育于浅缓坡下部障积丘礁沉积环境。值得注意的是,研究区陡山沱组末期障积丘礁的发育是加速该区域沉积体系由缓坡向台地演化的重要盆地演化动力学因素。  相似文献   

14.
我国陆相湖盆页岩具有较大的生烃潜力,但是对其研究起步较晚,目前存在诸多不足,尤其对富生烃页岩岩相特征及其沉积作用过程、成因演化等方面的研究工作均处于探索阶段.综合岩心、薄片、XRD矿物含量分析、主微量元素和测井等数据,在沉积学、元素地球化学以及-R(湖进-湖退)层序理论的指导下,详细研究了东营凹陷沙四上亚段页岩的岩相特征及其沉积过程、岩相发育与层序耦合关系以及古气候和湖泊的演化过程.结果表明,沙四上亚段页岩自下而上主要由硬石膏薄夹层页岩相、含粉砂富粘土质页岩相、块状灰质页岩相和纹层状灰质页岩相组成,分别沉积于盐湖环境、前三角洲环境、浅湖环境和深湖-半深湖环境.页岩岩相组合的垂向演化与体系域的纵向分布具有明显的耦合关系,揭示了古气候由干旱转为潮湿、湖盆由小型湖泊演化为大型湖泊,并推断古气候的变化和控盆正断层的活动是控制研究区古湖泊演化的两个重要因素.   相似文献   

15.
The Main Tuff Interval (MTI) is a 3.5 to 16.4 m thick sequence of pyroclastic turbidites in the Wittenoom Formation of the late Archean to early Proterozoic Hamersley Group, Western Australia. The Hamersley Group accumulated in a basin located on the Archean Pilbara Craton, Western Australia. MTI pyroclasts formed via hydrovolcanic eruption processes from a magma that was likely intermediate in composition. Eruption took place in a shallow subaqueous setting. The MTI was deposited by high- and low- concentration turbidity currents in four overlapping regional depositional packages. Paleocurrent and stratigraphic data indicate the MTI source lay to the north of the present exposure limits of the Hamersley Group on the Pilbara Craton, and was likely to have been a single volcano. Reflection of turbidity currents in the southeastern part of the study area and westward travel of the reflected flows indicate that the Hamersley Group depositional basin shallowed to the east and south at the time of MTI deposition. The presence of the MTI source volcano on the northern Pilbara Craton indicates that the subsidence and marine deposition recorded by the Hamersley Group may be limited to the southern portion of the craton, and that volcanism may have continued on the northern Pilbara Craton.  相似文献   

16.
出露于扬子北缘大洪山地区的打鼓石群是扬子地区保留比较完整的中元古代地层,其上被青白口系花山群不整合覆盖。通常认为其与神农架群时代相当,但缺乏物源及同位素地质年代学证据。首次报导了打鼓石群底部太阳寺组砂岩的碎屑锆石U-Pb年龄。测年结果显示,该砂岩中碎屑锆石最古老的年龄为3.1~3.2Ga,最年轻年龄为1124Ma,并在2.65Ga和2.75Ga出现统计峰值,且年龄组成与崆岭杂岩区和杨坡杂岩区的多期岩浆活动具有较好的可比性。而鄂西地区神农架群沉积于1.1~1.4Ga,主要统计峰值年龄为1.6Ga、2~2.1Ga、2.7~2.8Ga。因此,打鼓石群沉积时间晚于神农架群,两者非同物异名。  相似文献   

17.
The Central Indian Tectonic Zone (CITZ) is a Proterozoic suture along which the Northern and Southern Indian Blocks are inferred to have amalgamated forming the Greater Indian Landmass. In this study, we use the metamorphic and geochronological evolution of the Gangpur Schist Belt (GSB) and neighbouring crustal units to constrain crustal accretion processes associated with the amalgamation of the Northern and Southern Indian Blocks. The GSB sandwiched between the Bonai Granite pluton of the Singhbhum craton and granite gneisses of the Chhotanagpur Gneiss Complex (CGC) links the CITZ and the North Singhbhum Mobile Belt. New zircon age data constrain the emplacement of the Bonai Granite at 3,370 ± 10 Ma, while the magmatic protoliths of the Chhotanagpur gneisses were emplaced at c. 1.65 Ga. The sediments in the southern part of the Gangpur basin were derived from the Singhbhum craton, whereas those in the northern part were derived dominantly from the CGC. Sedimentation is estimated to have taken place between c. 1.65 and c. 1.45 Ga. The Upper Bonai/Darjing Group rocks of the basin underwent major metamorphic episodes at c. 1.56 and c. 1.45 Ga, while the Gangpur Group of rocks were metamorphosed at c. 1.45 and c. 0.97 Ga. Based on thermobarometric studies and zircon–monazite geochronology, we infer that the geological history of the GSB is similar to that of the North Singhbhum Mobile Belt with the Upper Bonai/Darjing and the Gangpur Groups being the westward extensions of the southern and northern domains of the North Singhbhum Mobile Belt respectively. We propose a three‐stage model of crustal accretion across the Singhbhum craton—GSB/North Singhbhum Mobile Belt—CGC contact. The magmatic protoliths of the Chhotanagpur Gneisses were emplaced at c. 1.65 Ga in an arc setting. The earliest accretion event at c. 1.56 Ga involved northward subduction and amalgamation of the Upper Bonai Group with the Singhbhum craton followed by accretion of the Gangpur Group with the Singhbhum craton–Upper Bonai Group composite at c. 1.45 Ga. Finally, continent–continent collision at c. 0.96 Ga led to the accretion of the CGC with the Singhbhum craton–Upper Bonai Group–Gangpur Group crustal units, synchronous with emplacement of pegmatitic granites. The geological events recorded in the GSB and other units of the CITZ only partially overlap with those in the Trans North China Orogen and the Capricorn Orogen of Western Australia, indicating that these suture zones are not correlatable.  相似文献   

18.
宋立军  刘池阳  赵红格  王建强  张小龙 《地球科学》2016,41(8):1295-1308, 1321
鄂尔多斯盆地西南部及邻区沉积了一套以黄旗口组为代表的巨厚的中元古界碎屑岩系,该套地层具有重要的油气勘探潜力,但目前人们对该套地层的勘探认识尚不够深入,利用碎屑组分、主微量、稀土元素等地球化学手段,结合区域及深部背景特征,探讨了该套地层形成时期的沉积环境和构造背景.结果显示,黄旗口组整体形成于气候干燥的淡水氧化或富氧的过渡环境,沉积期古海水温度较高(平均为32 ℃);黄旗口组碎屑组分及其主微量元素特征与东非裂谷区相似,加之其沉积于淡水环境,并具有自下段至上段石英砂岩含量逐渐增加的特征,表明研究区黄旗口组应处于陆内裂谷构造背景,自早至晚构造沉积环境日趋稳定,其中早期应为陆内裂谷环境,晚期可能变为坳陷环境,该构造背景的形成可能与华北克拉通逆时针旋转有关.   相似文献   

19.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

20.
The transmission electron microscope has been used to study the ultrafabric changes and crystal growth during incipient metamorphism (eometamorphism) of a shallow-water microcrystalline Kolhan limestone, Singhbhum district, Bihar. The eometamorphosed limestone is characterized by gradual increase in crystal size, abrupt changes from curvilinear boundaries to strain-induced planar triple junctions, transgranular microcracks and glide planes. The textural details like growth lines, intergranular microcracks and microporosity, and fluid inclusions commonly associated with early neomorphosed limestones have been progressively eliminated by eometamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号