共查询到20条相似文献,搜索用时 15 毫秒
1.
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
V. Hrissanthou 《水文研究》2006,20(18):3939-3952
The Yermasoyia Reservoir is located northeast of the town of Limassol, Cyprus. The storage capacity of the reservoir is 13·6 × 106 m3. The basin area of the Yermasoyia River, which feeds the reservoir, totals 122·5 km2. This study aims to estimate the mean annual deposition amount in the reservoir, which originates from the corresponding basin. For the estimate of the mean annual sediment inflow into the reservoir, two mathematical models are used alternatively. Each model consists of three submodels: a rainfall‐runoff submodel, a soil erosion submodel and a sediment transport submodel for streams. In the first model, the potential evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Schmidt and the sediment transport submodel of Yang are used. In the second model, the actual evapotranspiration is estimated for the rainfall‐runoff submodel, and the soil erosion submodel of Poesen and the sediment transport submodel of Van Rijn are used. The deposition amount in the reservoir is estimated by means of the diagram of Brune, which delivers the trap efficiency of the reservoir. Daily rainfall data from three rainfall stations, and daily values of air temperature, relative air humidity and sunlight hours from a meteorological station for four years (1986–89) were available. The computed annual runoff volumes and mean annual soil erosion rate are compared with the respective measurement data. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
中国的水库泥沙淤积问题 总被引:16,自引:2,他引:16
由于我国有许多河流是含沙最高、输沙量大的多泥沙河流,水库泥沙淤积问题异常严重.主要表现在:淤积数量大,淤积速率快.据统计,截止到1981年底全国水库总淤积量达115×10~8m~3.占统计水库总库容的14.2%.年平均库容损失率达2.3%,高于世界各国.水库的严重淤积,不仅影响水库兴利效益的发挥,严重威胁水库的使用寿命,而且还造成一系列在进行水库规划时未曾充分估计到的环境问题.本文重点从河流水文泥沙特性、我国水库淤积问题的严重性、水库淤积引起的问题及水库防淤减淤措施等4个方面作一较全面的分析和探讨. 相似文献
4.
Experimental investigation of flow pattern and sediment deposition in rectangular shallow reservoirs
Sébastien ERPICUM 《国际泥沙研究》2010,25(3):258-270
This paper reports the experimental investigation of flow pattern, preferential regions of deposition and trap efficiency as a function of the length of rectangular shallow reservoirs. Four flow patterns were identified (from longer to shorter reservoirs): an asymmetric flow with two reattachment points, an asymmetric flow with one reattachment point, an unstable flow, and a symmetric flow without any reattachment point. Using dye visualizations, the median value and the temporal variability of the reattachment lengths were precisely measured for the asymmetric flows. For each stable flow, sediment tests with plastic particles were carried out. The regions of deposition on the bed of the reservoir were clearly a function of the flow pattern. The transition from an asymmetric flow pattern to a symmetric flow pattern was responsible for an abrupt decrease of the trap efficiency; a number of regression laws were discussed to take it into account. 相似文献
5.
Three-dimensional numerical modelling of wind-driven circulation in a homogeneous lake 总被引:1,自引:0,他引:1
A three-dimensional numerical model has been developed to study wind-induced circulation patterns in a shallow homogeneous lake with a complex bathymetry. The governing equations are the unsteady Reynolds-Averaged Navier–Stokes equations in which the non-hydrostatic pressure distribution has been included. The model was tested against analytical solutions and laboratory data for wind-induced currents and then applied to Esthwaite Water, a small lake in Cumbria, UK. The model was used to study the main model parameters and to generate typical circulation patterns for a variety of conditions in the lake. Simulations showed that a non-hydrostatic pressure distribution did not have any noticeable influence on the overall circulation pattern in the lake. However, comparisons with field data at some measurement stations in the near-shore region with sharply varying bottom topography showed that the hydrodynamic pressure component had some influence on the vertical velocity profile. 相似文献
6.
A 7-year sediment transport monitoring on the Upper Niger rivers was used to study the relationship between suspended sediment concentration and river discharge. During annual floods, these relationships show positive hysteresis. This paper presents the results of two models that estimate the time evolution of suspended sediment concentration using water discharge data only. The first model is based on a statistical approach using two relationships, one for the rising stage period of the flood and one for the recession period of the annual flood; the second model is a lumped conceptual one; it supposes that the sediment flux observed in the river comes from two different sources of sediment and that these two sources may be regarded as two different reservoirs. The erosion of the first reservoir represents hillslope erosion observed during the runoff season. Sediment supply from this ‘reservoir’ is limited in time because depletion occurs during the runoff season. The second reservoir is unlimited in time and quantity and its erosion represents contributions coming from bank erosion and mobilisation of deposits in the channel network.
Both of the models are compared with a simple rating curve based model. The model results show that the conceptual model has the highest efficiency to reproduce from weekly discharge only the time evolution of weekly suspended sediment concentrations, the time evolution of weekly sediment fluxes, and the global annual sediment yields. 相似文献
7.
Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai 总被引:1,自引:1,他引:1
ZUO Shu-Hua ZHANG Ning-Chuan LI Bei ZHANG Zheng ZHU Zhi-Xia Ph.D c idate State Key Laboratory of Coastal Offshore Engineering Dalian University of Technology Dalian China Key Laboratory of Engineering Sediment of Ministry of Communications Tianjin Research Institute of Water Transport Engineering Tianjin China. Dr. Prof. China Research Scientist Key Labor... 《国际泥沙研究》2009,24(3):287-298
Yangshan near-shore sea area is the multi-island and multi-channel area with strong flow velocity and high suspended sediment concentration. Based on the characteristics of tidal currents, waves, and sediment in the Yangshan area, a two-dimensional numerical model of tidal currents, sediment transport, and sea bed deformation is developed. In the model, the effects of tidal currents and wind waves on sediment transport are considered. According to characteristics of the study area, unstructured grids are applied to fit the boundaries of the near-shore sea area. The results show that the calculated values are in good agreement with the measured data. The field of tidal currents, suspended sediment concentrations, and the deformation of the seabed can be successfully simulated. 相似文献
8.
This paper investigates the validity of a quasi-steady approximation for sediment transport and presents a new algorithm based on this concept. The developed non-coupled algorithm interacts among hydrodynamic, sediment, and morphology modules which are based on depth-averaged Navier-Stokes equations for the flow, the three-dimensional equation of conservation of sediment, and the mass balance between the bed and sediment (Exner equation) to simulate the reservoir sedimentation process. The non-coupled algorithm solves both the short-term scale and the relatively long-term scale problems of reservoir sedimentation. The proposed algorithm is verified using field data and by comparison with other accurate algorithms. Based upon the results of this investigation, the developed algorithm can be used to simulate long-term reservoir sedimentation while considerably decreasing the computational costs and preserving computational accuracy. The computational cost of the non-coupled algorithm is about 97% less than the conventional semi-coupled approach whereas the errors (Root Mean Square Error, Average Relative Error, and Maximum Relative Error of bed level) of the developed algorithm are approximately 15% greater than those for the semi-coupled algorithm for the average value. 相似文献
9.
River meandering has been extensively investigated. Two fundamental features to be explored in order to make further progress are nonlinearity and unsteadiness. Linear steady models have played an important role in the development of the subject but suffer from a number of limits. Moreover, rivers are not steady systems; rather their states respond to hydrologic forcing subject to seasonal oscillations, punctuated by the occurrence of flood events. We first derive a classification of river bends based on a systematic assessment of the various physical mechanisms affecting their morphodynamic equilibrium and their evolution in response to variations of hydrodynamic forcing. Using the database by Lagasse et al. ( 2004 ) we also show that natural meanders are typically mildly curved and long, i.e. such that both the centrifugal and the topographic secondary flows are weak, but they are almost invariably nonlinear. We then review some recent developments which allow us to treat analytically the flow and bed topography of mildly curved and long nonlinear bends subject to steady forcing, taking advantage of the fact that flow and bed topography in mildly curved long bends are slowly varying. Results show that nonlinearity has a number of consequences: most notably damping of the morphodynamic response and upstream shifting of the location of the nonlinear peak of the flow speed. Next we extend the latter model to the case of unsteady forcing. Results are found to depend crucially on the ratio between the flood duration and a morphodynamic timescale. It turns out that, in a channel subject to a repeated sequence of floods, the system reaches a dynamic equilibrium. We conclude the paper discussing how the present assessment relates to the debate on meander modelling of the late 1980s and suggesting what we see as promising lines of future developments. 相似文献
10.
Simon M. Hutchinson 《地球表面变化过程与地形》1995,20(4):293-314
In response to the potential shortcomings of single-technique strategies in the investigation of erosion and sedimentation, a combined magnetic and radiometric (13Cs and 210Pb) approach has been undertaken in the upland, watershed-lake system of Howden Reservoir, Derbyshire. By combining these techniques, some assessment of sediment sources and the erosion status of the catchment has been achieved. Alone, each approach would have been unable to determine unequivocally sediment provenance. Furthermore, the parallel use of these measurements has highlighted limitations and/or uncertainties in both the magnetic and 137Cs techniques. These problems reflect the particular soil characteristics and drainage conditions of this upland catchment. Despite the documented severity of peat erosion in the region, Howden Reservoir has a mixture of sediment sources and a relatively moderate rate of sedimentation. Sediment yields (total 127·7 t km?2 yr?1 including organic fraction 31·3 t km?2 yr?1) are, however, higher than in other British upland areas. 相似文献
11.
A numerical model previously developed to systematically examine groundwater flow in vertical section near shallow surface water bodies such as lakes, wetlands and ponds is further developed to include simulation of the distribution patterns of hydrogeochemical and stable isotopic tracers in relation to the surface water body and the geometry of distribution patterns of the tracers in the groundwater release zone of the lake. Many different possible flow regimes are identified, however, in this paper attention is focused on flow-through water bodies, as these are the flow regimes observed in field validation. Two shallow lakes on the Swan Coastal Plain of south-west Western Australia are the subject of field studies where hydrogeochemical and stable isotopes are used to validate the flow-through groundwater flow regime predicted by the modelling confirming the validity of the approach. The flow regime transition diagrams introduced in earlier papers are extended to include consideration of the hydrogeochemical and stable isotopic indices ClL/Cl+ and (1000+δL)/(1000+δ+). These ratios are introduced as an additional two of nine non-dimensional ratios that are necessary to analyse the problem. The ratios represent the chloride and isotopic composition (ClL and δL), respectively, in the groundwater release zones of the lakes, relative to these parameters in the groundwater capture zone (Cl+ and δ+) for the lake. Field data from the case studies plotted on appropriately configured transition diagrams demonstrates the overall validity of the modelling approach and its underlying assumptions. It is concluded that isotopic and hydrogeochemical data are invaluable in interpreting the interaction between lakes or wetlands and regional aquifers as it is very difficult to make physical or hydraulic measurements in the field that allow an understanding of lake–aquifer interaction. The tools and concepts developed that are summarized in the presented transition diagrams are invaluable starting points for the consideration and analysis of other case-specific examples of groundwater–surface water interaction and will improve the scientific basis of decision-making concerning lake and wetland management and groundwater interaction by water resource and environmental managers. 相似文献
12.
H. M. Habersack 《水文研究》2001,15(3):377-391
Hans A. Einstein initiated a probabilistic approach to modelling sediment transport in rivers. His formulae were based on theory and were stimulated by laboratory investigations. The theory assumes that bed load movement occurs in individual steps of rolling, sliding or saltation and rest periods. So far very few attempts have been made to measure stochastic elements in nature. For the first time this paper presents results of radio‐tracing the travel path of individual particles in a large braided gravel bed river: the Waimakariri River of New Zealand. As proposed by Einstein, it was found that rest periods can be modelled by an exponential distribution, but particle step lengths are better represented by a gamma distribution. Einstein assumed an average travel distance of 100 grain‐diameters for any bed load particle between consecutive points of deposition, but larger values of 6·7 m or 150 grain‐diameters and 6·1 m or 120 grain‐diameters were measured for two test particle sizes. Together with other available large scale field data, a dependence of the mean step length on particle diameter relative to the D50 of the bed surface was found. During small floods the time used for movement represents only 2·7% of the total time from erosion to deposition. The increase in percentage of time being used for transport means that it then has to be regarded in stochastic transport models. Tracing the flow path of bed load particles between erosion and deposition sites is a step towards explaining the interactions between sediment transport and river morphology. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS. 相似文献
14.
An adequately tested soil and water assessment tool (SWAT) model was applied to the runoff and sediment yield of a small agricultural watershed in eastern India using generated rainfall. The capability of the model for generating rainfall was evaluated for a period of 18 years (1981–1998). The watershed and subwatershed boundaries, drainage networks, slope, soil series and texture maps were generated using a geographical information system (GIS). A supervised classification method was used for land‐use/cover classification from satellite imageries. Model simulated monthly rainfall for the period of 18 years was compared with observations. Simulated monthly rainfall, runoff and sediment yield values for the monsoon season of 8 years (1991–1998) were also compared with their observed values. In general monthly average rainfall predicted by the model was in close agreement with the observed monthly average values. Also, simulated monthly average values of surface runoff and sediment yield using generated rainfall compared well with observed values during the monsoon season of the years 1991–1998. Results of this study revealed that the SWAT model can generate monthly average rainfall satisfactorily and thereby can produce monthly average values of surface runoff and sediment yield close to the observed values. Therefore, it can be concluded that the SWAT model could be used for developing a multiple year management plan for the critical erosion prone areas of a small watershed. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
Xiaobo Chao Yafei Jia F. Douglas Shields Jr. Sam S.Y. Wang Charles M. Cooper 《Advances in water resources》2008
It was observed that in some closed inland lakes sediment transport was dominated by wind-induced currents, and the sediment resuspension was primarily driven by wind-induced waves. This paper presents the development and application of a three-dimensional numerical model for simulating cohesive sediment transport in water bodies where wind-induced currents and waves are important. In the model, the bottom shear stresses induced by currents and waves were calculated, and the processes of resuspension (erosion), deposition, settling, etc. were considered. This model was first verified by a simple test case consisting of the movement of a non-conservative tracer in a prismatic channel with uniform flow, and the model output agreed well with the analytical solution. Then it was applied to Deep Hollow Lake, a small oxbow lake in Mississippi. Simulated sediment concentrations were compared with available field observations, with generally good agreement. The transport and resuspension processes of cohesive sediment due to wind-induced current and wave in Deep Hollow Lake were also discussed. 相似文献
16.
Effects of discharge,wind, and tide on sedimentation in a recently restored tidal freshwater wetland 下载免费PDF全文
Eelco Verschelling Eveline van der Deijl Marcel van der Perk Kees Sloff Hans Middelkoop 《水文研究》2017,31(16):2827-2841
Sediment deposition is one of the key mechanisms to counteract the impact of sea level rise in tidal freshwater wetlands (TFWs). However, information about sediment deposition rates in TFWs is limited, especially for those located in the transition zone between the fluvially dominated and tidally dominated sections of a river delta where sedimentation rates are affected by the combined impact of river discharge, wind, and tides. Using a combined hydrodynamic–morphological model, we examined how hydrometeorological boundary conditions control sedimentation rates and patterns in a TFW located in the Rhine–Meuse estuary in the Netherlands. The modelling results show that net sedimentation rate increases with the magnitude of the river discharge, whereas stronger wind increasingly prevents sedimentation. Sediment trapping efficiency decreases for both increasing river discharge and wind magnitude. The impact of wind storms on the trapping efficiency becomes smaller for higher water discharge. The spatial sedimentation patterns are affected by all controls. Our study illustrates the importance of evaluating both the separate and the joint impact of discharge, wind, and tides when estimating sedimentation rates in a TFW affected by these controls. Such insights are relevant to design measures to reactivate the sedimentation process in these areas. 相似文献
17.
An improved method for evaluating the seasonal variability of total suspended sediment flux field in the Yellow and East China Seas 总被引:1,自引:0,他引:1
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter. 相似文献
18.
Alexandre Remaître Jean‐Philippe Malet Olivier Maquaire Christophe Ancey Jacques Locat 《地球表面变化过程与地形》2005,30(4):479-488
Identification of debris‐flow hazard areas necessitates the knowledge of the flow thickness and the runout distance. Both have been investigated using a numerical runout model. On the Faucon stream (South French Alps), representative of clay‐shale basins, results of various rheological tests and numerical experiments are presented and discussed. The calibration of the model was undertaken using the results of both geomorphological surveys and sedimentological analyses. Rheological tests using either a parallel‐plate rheometer, a coaxial rheometer, slump tests, and an inclined plane were carried out on several samples. Results have shown that the flow behaviour could be described by an Herschel‐Bulkley constitutive equation. The rheological responses of several natural suspensions collected from surficial deposits (sandstones, moraines, weathered black marls) were also investigated. In order to model the runout of the flow, the model BING was used. The model describes well the influence of each type of sediment on the behaviour (runout distance, deposit thickness) of the flow, although the velocities were significantly overestimated. Different risk scenarios are tested and discussed. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
20.
水源水库季节性分层及悬浮物行为对铁锰迁移的影响——以辽宁省碧流河水库为例 总被引:2,自引:0,他引:2
铁和锰是氧化还原敏感的元素,水源水库热分层引起的底层水体缺氧造成了沉积物中铁和锰的释放,对城市供水造成了极大的影响.以往鲜有悬浮物行为对铁和锰在水库水-沉积物界面迁移影响的研究,于2014年2月-2015年2月对碧流河水库深水区的水、悬浮物以及沉积物铁和锰的垂向分布特征进行综合调查分析,并进一步分析铁和锰的季节性变化规律及悬浮物行为对其的影响.Spearman相关分析结果表明铁浓度与总悬浮固体、总氮和总磷的相关性较大;锰浓度与总悬浮固体、溶解氧、pH和总氮的相关性较大.进一步讨论分析表明碧流河水库的热分层、底层缺氧以及沉积物再悬浮是影响铁和锰浓度的重要因素,水库铁和锰的季节变化规律存在差异.分层期溶解态的锰在底层累积,平均浓度达到0.18 mg/L,而沉积物中溶解态的铁释放很少.混合期水库的中上层锰浓度升高,达到了0.07 mg/L.沉积物的再悬浮是水库底层水体中铁的主要来源,底层颗粒态铁的平均浓度约为0.3 mg/L.絮凝的颗粒物以及其吸附的锰在水库长期悬浮,难以沉积到水库底部,使得悬浮物中Mn的含量显著高于表层沉积物,约为沉积物的7倍.建议应在碧流河水库采用分层取水、水库曝气以及联合供水等措施,以减少铁和锰的浓度升高对供水产生的影响,保障大连市城市供水安全. 相似文献