首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the chemical composition of the hot springs of Mendeleev Volcano (Kunashir Island) as for Cl?, SO 4 2? , CO2, NH 4 + and Cl?/SO 4 2? are given in function of the 1965–66 and 1973 (in part) seismic activity in the South Kurile islands.  相似文献   

2.
Rock masses contain ubiquitous multiscale heterogeneities, which (or whose boundaries) serve as the surfaces of discontinuity for some characteristics of the stress state, e.g., for the orientation of principal stress axes. Revealing the regularities that control these discontinuities is a key to understanding the processes taking place at the boundaries of the heterogeneities and for designing the correct procedures for reconstructing and theoretical modeling of tectonic stresses. In the present study, the local laws describing the refraction of the axes of extreme principal stresses T 1 (maximal tension in the deviatoric sense) and T 3 (maximal compression) of the Cauchy stress tensor at the transition over the elementary area n of discontinuity whose orientation is specified by the unit normal n are derived. It is assumed that on the area n of discontinuity, frictional contact takes place. No hypotheses are made on the constitutive equations, and a priori constraints are not posed on the orientation on the stress axes. Two domains, which adjoin area n on the opposite sides and are conventionally marked + and ?, are distinguished. In the case of the two-dimensional (2D) stress state, any principal stress axis on passing from domain ? to domain + remains in the same quadrant of the plane as the continuation of this axis in domain +. The sign and size of the refraction angle depend on the sign and amplitude of the jump of the normal stress, which is tangential to the surface of discontinuity. In the three-dimensional (3D) case, the refraction of axes T 1 and T 3 should be analyzed simultaneously. For each side, + and ?, the projections of the T 1 and T 3 axes on the generally oriented plane n form the shear sectors S + and S ?, which are determined unambiguously and to whose angular domains the possible directions p + and p ? of the shear stress vectors belong. In order for the extreme stress axes T 1 + ,T 3 + and T 1 ? , T 3 ? to be statically compatible on the generally oriented plane n, it is required that sectors S + and S ? had a nonempty intersection. The direction vectors p + and p ? are determined uniquely if, besides axes T 1 ? , T 3 ? and T 1 + , T 3 + , also the ratios of differential stresses R + and R ? (0 ≤ R ± ≤ 1) are known. This is equivalent to specifying the reduced stress tensors T R + and T R ? The necessary condition for tensors T R + and T R ? being statically compatible on plane n is the equality p + = p ?. In this paper, simple methods are suggested for solving the inverse problem of constructing the set of the orientations of the extreme stress axes from the known direction p of the shear stress vector on plane n and from the data on the shear sector. Based on these methods and using the necessary conditions of local equilibrium on plane n formulated above, all the possible orientations of axes T 1 + , T 3 + are determined if the projections of axes T 1 ? , T 3 ? axes on side — are given. The angle between the projections of axes T 1 + , T 1 ? and/or T 3 + , T 3 ? on the plane can attain 90°. Besides the general case, also the particular cases of the contact between the degenerate stress states and the special position of plane n relative to the principal stress axes are thoroughly examined. Generalization of the obtained results makes it possible to plot the local diagram of the orientations of axes T 1 + , T 3 + for a given sector S ?. This diagram is a so-called stress orientation sphere, which is subdivided into three pairs of areas (compression, tension, and compression-extension). The tension and compression zones cannot contain the poles of T 3 + and T 1 + axes, respectively. The compression-extension zones can contain the poles of either T 1 + or T 3 + axis but not both poles simultaneously. In the particular case when the shear stress vector has a unique direction p ? on side ?, the areas of compression-extension disappear and the diagram is reduced to a beach-ball plot, which visualizes the focal mechanism solution of an earthquake. If area n is a generally oriented plane and if the orientation of the pairs of the statically compatible axes T 1 ? , T 3 ? and T 1 + , T 3 + is specified, then, the stress values on side + are uniquely determined from the known stress values on side ?. From the value of differential stress ratio R ?, one can calculate the value of R +, and using the values of the principal stresses on side ?, determine the total stress tensor T + on side +. The obtained results are supported by the laboratory experiments and drilling data. In particular, these results disclose the drawbacks of some established notions and methods in which the possible refraction of the stress axes is unreasonably ignored or taken into account improperly. For example, it is generally misleading to associate the slip on the preexisting fault with the orientation of any particular trihedron of the principal stress axes. The reconstruction should address the potentially statically compatible principal stress axes, which are differently oriented on opposite sides of the fault plane. The fact that, based on the orientation of the intraplate principal stresses at the base of the lithosphere, one cannot make a conclusion on the active or passive influence of the mantle flows on the lithospheric plate motion is another example. The present relationships linking the stress values on the opposite sides of the fault plane on which the orientations of the principal stress axes are known demonstrate the incorrectness of the existing methods, in which the reduced stress tensors within the material domains are reconstructed without allowance for the dynamic interaction of these domains with their neighbors. In addition, using the obtained results, one can generalize the notion of the zone of dynamical control of a fault onto the case of the existence of discontinuities in this region and analyze the stress transfer across the system of the faults.  相似文献   

3.
Dew samples were collected between October 2007 and February 2008 from a suburban site in Agra. pH, conductivity, major inorganic ions (F?, Cl?, NO 3 ? , SO 4 2? , Na+, K+, Ca2+, Mg2+, and NH 4 + ), and some trace metals (Cr, Sn, Zn, Pb, Cd, Ni, Mn, Fe, Si, Al, V, and Cu) were determined to study the chemistry of dew water. The mean pH was 7.3, and the samples exhibited high ionic concentrations. Dew chemistry suggested both natural and anthropogenic influences, with acidity being neutralized by atmospheric ammonia and soil constituents. Ion deposition flux varied from 0.25 to 3.0?neq?m?2?s?1, with maximum values for Ca2+ followed by NH 4 + , Mg2+, SO 4 2? , Cl?, NO 3 ? , Na+, K+, and F?. Concentrations of trace metals varied from 0.13 to 48?μg?l?1 with maximum concentrations of Si and minimum concentration of Cd. Correlation analysis suggested their contributions from both crustal and anthropogenic sources.  相似文献   

4.
5.
Concentrations of major ions in surface waters of the rivers of Khara-Murin and Snezhnaya are compared based on data of many-year observations carried out in the 1950s and 2000s. The concentrations of HCO 3 ? , Cl?, Ca2+, Mg2+, Na+ + K+ are shown to be stable. A considerable increase in SO 4 ?2 concentration was revealed.  相似文献   

6.
The study aims to measure the hydrological behavior and nutrients dynamics of the springs located in different landscapes of Kosi basin, Indian central Himalaya. A total number of eight springs were considered for the present investigation, each landscape represented by one spring. The monitoring for hydrological measurement was conducted in January 1998 to December 1999, the interval between two successive measurements was 10 days, i.e., 240 hr (total 72 observations were made). Water quality measurement was done in three main seasons, i.e., winter (Jan.), summer (June) and monsoon (Aug.) of 1998 and 1999, and the average value for measured parameters were calculated. These samples were analyzed for pH, electrical conductivity, total dissolved solids, dissolve oxygen, Ca2?, Mg2?, Na?, Cl?, F?, NO 3 ? , and SO 4 2? . Hydrology of spring’s water showed that the reserve forest has a higher water retention capacity than the other landscapes, and the spring recharge capacity highly influenced by the settlements, open grazing, mismanaged agricultural and deforestation activities. The spring water chemistry shows that the springs located in forest and sparsely populated areas have lower EC, TDS, cationic and anionic concentration and are safe for drinking purposes, but those in irrigated land and densely populated areas feature higher EC, low dissolved oxygen concentration and higher NO 3 ? , which makes the water of these springs unsuitable for drinking. F concentration was higher in the springs located in the settlement area. In brief, the study indicates that the unmanaged drains, very poor and old pattern of sewage disposing system result in an increase in Na?, Cl?, F?, NO 3 ? , and SO 4 2? concentration as compared to the springs in agricultural and forested areas. All of the studied springs are badly managed which a is great threat for the longevity and quality of the water bodies, in particular, in Indian Central Himalayan region. This study suggests the ways of the constructional works, grazing. Forest resource extraction and agricultural activities in water bodies catchments area should also be controlled.  相似文献   

7.
It is shown that when the travel-time curve of a refracted wave from a surface source is known and at least one of the following conditions is satisfied, i.e. when
  1. the travel-time curve of a wave reflected from a horizontal interface lying below the deepest low velocity layer is known, or
  2. the travel-time curve of a wave from a deep source situated below the deepest low velocity layer is known, or
  3. the measureH(u)=mes {z∶z≥0,v ?1 (z)≥u} is analytical in some segment [c, d], where \(0< c< d< \infty , c< a_n , H(a_n ) = \bar z_n ,\bar z_n\) is the depth of the lower end of the deepest low velocity layer and in the interval [c, ∞) an analytical functionH(u)) exists which providesH(u)≡H(u)) ifu∈[c, d], then (1) velocityv(z) outside the low velocity layers and (2) the measureH k (u)=mes {z∶z∈L k,v ?1 (z)≥u} for each low velocity layerL k,k=1, 2, ..., n, are defined unambiguously.
  相似文献   

8.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

9.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

10.
11.
In the strip limestone mine in Guiding county, Guizhou Province the shear and frictionin situ tests of rock body were made for the three typical inclined weak bands C 3 1 /C 3 1 , C 3 1 /C 2 2 and C 2 2 /C 2 1 . The tests were made according to the second scheme of cuneate sample of the standards on rock mechanics test of Water Conservancy and Electricity Ministry. The changes of the resistivity in the weak band and the acoustic speed across the weak band were measured in the same time. The apparent resistivity data, obtained for 8 samples on 27 measure lines in 38 cycle tests, show that the apparent resistivity changes have rather obvious characters as follows: 1. At shear and friction stage, the change of the apparent resistivity accelerates after the yield point, and reaches the maximum of change rate and change amplitude near fracture point (except the lines with resistivity invariant); 2. On the same sample, the resistivity changes are different on the various lines and related to the location settled the lines, there are some “sensitive” location; 3. At the stage of preloading normal stress before shearing, the resistivity decreases on most lines, but on a few lines the resistivity does not changes; 4. After unloading shear stress, the resistivity could not recover completely and the hysteresis of resistiviity takes place on a few lines.  相似文献   

12.
The relative rate constants of O2(b1Σ g + , v= 1–4) production at an inelastic interaction between electronically excited N(2D) atoms and O2(X3Σ g ? , v = 0) oxygen molecules have been calculated. It was shown that an increase in equilibrium distances between oxygen atoms in NO2 quasi-molecule, produced during the interaction, substantially increases the calculated relative production rates of O2(b1Σ g + , v > 1). The obtained coefficients are used to calculate the O2(b1Σ g + , v= 1–4) relative populations at 110 km (T = 250 K) and 150 km (T = 500 K) altitudes of the polar ionosphere. The calculated populations have been compared with the results of the published measurements of the Atmospheric system band luminosity intensities, and satisfactory agreement has been obtained for low altitudes.  相似文献   

13.
A new estimate of the fracture parameters of earthquakes is provided in this paper. By theMuskhelishvili method (1953) a number of basic relations among fracture-mechanics parameters are derived. A scheme is proposed to evaluate the slip weakening parameters in terms of fault dimension, average slip, and rise time, and the new results are applied to 49 events compiled in the earthquake catalogue ofPurcaru andBerckhemer (1982). The following empirical relations are found in the paper: $$\begin{gathered} \frac{{\tau _B - \tau _f }}{{\tau _\infty - \tau _f }} = 2.339 \hfill \\ {{\omega _c } \mathord{\left/ {\vphantom {{\omega _c } {W = 0.113}}} \right. \kern-\nulldelimiterspace} {W = 0.113}} \hfill \\ \log G_c \left( {{{dyne} \mathord{\left/ {\vphantom {{dyne} {cm}}} \right. \kern-\nulldelimiterspace} {cm}}} \right) = 2 \log L (km) + 6.167 \hfill \\ \log \delta _c (cm) = 2 \log L (km) - 1.652 \hfill \\ \end{gathered} $$ whereG c is the specific fracture energy,ω c the size of the slip weakening zone,δ c the slip weakening displacement,τ B ?τ f the drop in strength in the slip weakening zone,τ ?τ f the stress drop,L the fault length, andW the fault width. The investigation of 49 shocks shows that the range of strength dropτ B ?τ f is from several doze to several hundred bars at depthh<400 km, but it can be more than 103 bars ath>500 km; besides, the range of the sizeω c of the strength degradation zone is from a few tenths of a kilometer to several dozen kilometers, and the range of the slip weakening displacementδ c is from several to several hundred centimeters. The specific fracture energyG c is of the order of 108 to 1011 erg cm?2 when the momentM 0 is of the order of 1023 to 1029 dyne cm.  相似文献   

14.
The TKE dissipation rate in the northern South China Sea   总被引:1,自引:0,他引:1  
The microstructure measurements taken during the summer seasons of 2009 and 2010 in the northern South China Sea (between 18°N and 22.5°N, and from the Luzon Strait to the eastern shelf of China) were used to estimate the averaged dissipation rate in the upper pycnocline 〈ε p〉 of the deep basin and on the shelf. Linear correlation between 〈ε p〉 and the estimates of available potential energy of internal waves, which was found for this data set, indicates an impact of energetic internal waves on spatial structure and temporal variability of 〈ε p〉. On the shelf stations, the bottom boundary layer depth-integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ reaches 17–19 mW/m2, dominating the dissipation in the water column below the surface layer. In the pycnocline, the integrated dissipation $ {\widehat{\varepsilon}}_{\mathrm{p}} $ was mostly ~10–30 % of $ {\widehat{\varepsilon}}_{\mathrm{BBL}} $ . A weak dependence of bin-averaged dissipation $ \overline{\varepsilon} $ on the Richardson number was noted, according to $ \overline{\varepsilon}={\varepsilon}_0+\frac{\varepsilon_{\mathrm{m}}}{{\left(1+ Ri/R{i}_{\mathrm{cr}}\right)}^{1/2}} $ , where ε 0 + ε m is the background value of $ \overline{\varepsilon} $ for weak stratification and Ri cr?=?0.25, pointing to the combined effects of shear instability of small-scale motions and the influence of larger-scale low frequency internal waves. The latter broadly agrees with the MacKinnon–Gregg scaling for internal-wave-induced turbulence dissipation.  相似文献   

15.
The apparent equilibrium constant, K 1 , for the first acidity constant of carbonic acid has been determined in a lake water of 1.6 mM ionic strength in the temperature interval 4–18°C. The experimental method used comprises pH measurements in situ (NBS scale) with a probe and an IR-method for the selective determination of [H2CO3] and [HCO 3 ? ] in water samples. In the temperature interval studied the results can be described by the equation logK 1 =126.39?6320.81/T?19.5682 ln T and are in agreement with the values of K 1 obtained by the empirical equation presented by Millero [15]. This experimental agreement justifies thermodynamic calculations in the carbonate system based on field data. Also the experimental method described can be used to evaluate the acid-base balance of organic rich natural waters.  相似文献   

16.
The use of submersed macrophyte tissue δ 15N to quantify the level of WWTP effluent use in a highly urbanized and agricultural river was evaluated using several methods. Macrophytes, NH4 + and NO3 ? were collected by canoe along two 10 km reaches of river, upstream and downstream of two major municipal WWTPs over 3 years. NH4 + decreased in concentration while δ 15N–NH4 + increased as a function of distance downstream of both WWTPs, changing in one survey from 13 to 31 ‰ over 1 km. This increase is attributed to the combined effects of volatilization, nitrification and uptake. While NO 3 ? concentrations increased downstream of the WWTP over one of the survey reaches, δ 15N–NO 3 ? showed no prominent trend with distance at either. Macrophyte tissue δ 15N increased with distance downstream of both WWTPs, with a slope not significantly different from that of δ 15N–NH4 + suggesting that macrophytes incorporate effluent NH4 + as their main N source in those areas. However, mixing models suggest that towards the end of the reach, where source separation is distinct, macrophytes may utilize background NO 3 ? . Our study indicates the difficulty of deriving precise estimates of effluent use by macrophytes in a system where the δ 15N of the effluent changes rapidly. It also illustrates the utility of macrophytes in describing those changes where the effluent is too attenuated to allow for direct isotopic analysis.  相似文献   

17.
18.
The seismic behaviour of caisson foundations supporting typical bridge piers is analysed with 3D finite elements, with due consideration to soil and interface nonlinearities. Single-degree-of freedom oscillators of varying mass and height, simulating heavily and lightly loaded bridge piers, founded on similar caissons are studied. Four different combinations of the static ( $\text{ FS }_\mathrm{V}$ FS V ) and seismic ( $\text{ FS }_\mathrm{E}$ FS E ) factors of safety are examined: (1) a lightly loaded ( $\text{ FS }_\mathrm{V}= 5$ FS V = 5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson, (2) a lightly loaded seismically over-designed ( $\text{ FS }_\mathrm{E} >1$ FS E > 1 ) caisson, (3) a heavily loaded ( $\text{ FS }_\mathrm{V} = 2.5$ FS V = 2.5 ) seismically under-designed ( $\text{ FS }_\mathrm{E} < 1$ FS E < 1 ) caisson and (4) a heavily loaded seismically over-designed caisson. The analysis is performed with use of seismic records appropriately modified so that the effective response periods (due to soil-structure-interaction effects) of the studied systems correspond to the same spectral acceleration, thus allowing their inelastic seismic performance to be compared on a fair basis. Key performance measures of the systems are then contrasted, such as: accelerations, displacements, rotations and settlements. It is shown that the performance of the lightly loaded seismically under-designed caisson is advantageous: not only does it reduce significantly the seismic load to the superstructure, but it also produces minimal residual displacements of the foundation. For heavily loaded foundations, however ( $\text{ FS }_{V} = 2.5$ FS V = 2.5 ), the performance of the two systems (over and under designed) is similar.  相似文献   

19.
A modified formula of the cumulative frequency-magnitude relation has been formulated and tested in a previous paper by the authors of this study. Based on the modified relationship, the following reoccurrence formulas have been obtained.
  1. For the ‘T-years period’ larger earthquake magnitude,M T $$M_T = \frac{1}{{A_3 }}ln\frac{{A_2 }}{{(1/T) + A_1 }}.$$
  2. For the value of the maximum earthquake magnitude, which is exceeded with probabilityP inT-years period,M PT $$M_{PT} = \frac{{ln(A_2 .T)}}{{A_3 }} - \frac{{ln[A_1 .T - ln(1 - P)]}}{{A_3 }}.$$
  3. For the probability of occurrence of an earthquake of magnitudeM in aT-years period,P MT $$P_{MT} = 1 - \exp [ - T[ - A_1 + A_2 \exp ( - A_3 M)]].$$
The above formulas provide estimates of the probability of reoccurrence of the largest earthquake events which are significantly more realistic than those based on the Gutenberg-Richter relationships; at least for numerous tested earthquake samples from the major area of Greece.  相似文献   

20.
The full moment tensor is a mathematical expression of six independent variables; however, on a routine basis, it is a common practice to reduce them to five assuming that the isotropic component is zero. This constraint is valid in most tectonic regimes where slip occurs entirely at the fault surface (e.g. subduction zones); however, we found that full moment tensors are best represented in transform fault systems. Here we present a method to analyze source complexity of earthquakes of different sizes using a simple formulation that relates the elastic constants obtained from independent studies with the angle between the slip and the fault normal vector, referred to as angle \( \theta \) ; this angle is obtained from the full moment tensors. The angle \( \theta \) , the proportion of volume change \( \left( k \right) \) and the constant volume (shear) component \( \left( T \right) \) are numerical indicators of complexity of the source; earthquakes are more complex as \( \theta \) deviates from \( \pi /2 \) or as T and k deviate from zero as well. These parameters are obtained from the eigensolution of the full moment tensor. We analyzed earthquakes in the Gulf of California that exhibit a clear isotropic component and we observed that the constant volume parameter T is independent of scalar moments, suggesting that big and small earthquakes are equally complex. In addition, simple models of one single fault are not sufficient to describe physically all the combinations of \( \theta \) in a source type plot. We also found that the principal direction of the strike of the Transform Fault System in the Gulf of California is following the first order approximation of the normal surface of the full moment tensor solution, whereas for deviatoric moment tensors the principal direction does not coincide with the strike of the Transform Fault System. Our observations that small and large earthquakes are equally complex are in agreement with recent studies of strike-slip earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号