首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Multichannel filters are used to eliminate coherent noise from surface seismic data, for wavefield separation from VSP stacks, and for signal enhancement. Their success generally depends on the choice of the filter parameters and the domain of application. Multichannel filters can be applied to shots (monitors), common-receiver traces, CDP traces and stacked sections. Cascaded applications in these domains are currently performed in the seismic industry for better noise suppression and for signal enhancement. One-step shot-domain filtering is adequate for some applications. However, in practice, cascaded applications in shot-and common-receiver domains usually give better results when the S/N ratio is low. Multichannel filtering after stacking (especially after repeated applications in shot and/or receiver domains) may create undesirable results such as artificial continuations, or smearing and smoothing of small features such as small throw faults and fine stratigraphic details. Consequently, multichannel filtering after stacking must be undertaken with the utmost care and occasionally only as a last resort. Multichannel filters with fan-shaped responses (linear moveout filters) should be applied after NMO correction. These are the filters commonly used in the seismic industry where they have such names as velocity filters, moveout filters, f-k filters and coherency filters. Filtering before NMO correction may result in break-up and flattening especially of those shallow reflection events with relatively higher curvatures and diffractions. NMO correction is needed prior to wavefield separation from VSP stacks for the same practical reasons outlined above whenever source-receiver offsets are involved. Creation of artificial lineup and smearing at the outputs of multichannel filters is presently the common practical concern. Optimum multichannel filters with well-defined pass, reject and transition bands overcome the latter problems when applied before stacking and after NMO correction. The trace dimension of these filters must be kept small to avoid such lineups and the smoothing of small structures. Good results can be obtained with only five traces, but seven traces seems to be a better compromise both in surface and well seismic applications. The so-called f-k filtering and τ-p domain filtering are no exceptions to the above practical considerations. Residual static computations after multichannel filtering also need special consideration. Since multichannel filtering improves spatial continuity, residual static algorithms using local correlation, i.e. nonsurface-consistent algorithms, may be impractical especially after multichannel filtering.  相似文献   

2.
The common depth point method of shooting in oil exploration provides a series of seismic traces which yield information about the substrata layers at one location. After normal moveout and static corrections have been applied, the traces are combined by horizontal stacking, or linear multichannel filtering, into a single record in which the primary reflections have been enhanced relative to the multiple reflections and random noise. The criterion used in optimum horizontal stacking is to maximize the signal to noise power ratio, where signal refers to the primary reflection sequence and noise includes the multiple reflections. It is shown when this criterion is equivalent to minimizing the mean square difference between the desired signal (primary reflection sequence) and the weighted horizontally stacked traces. If the seismic traces are combined by multichannel linear filtering, the primary reflection sequence will have undergone some phase and frequency distortion on the resulting record. The signal to noise power ratio then becomes less meaningful a criterion for designing the optimum linear multichannel filter, and the mean square criterion is adopted. In general, however, since more a priori information about the seismic traces is required to design the optimum linear multichannel filter than required for the optimum set of weights of the horizontal stacking process, the former will be an improvement over the latter. It becomes evident that optimum horizontal stacking is a restricted form of linear multichannel filtering.  相似文献   

3.
The common depth point method of shooting in oil exploration provides a series of seismic traces which yield information about the substrata layers at one location. After normal moveout and static corrections have been applied, the traces are combined by horizontal stacking, or linear multichannel filtering, into a single record in which the primary reflections have been enhanced relative to the multiple reflections and random noise. The criterion used in optimum horizontal stacking is to maximize the signal to noise power ratio, where signal refers to the primary reflection sequence and noise includes the multiple reflections. It is shown when this criterion is equivalent to minimizing the mean square difference between the desired signal (primary reflection sequence) and the weighted horizontally stacked traces. If the seismic traces are combined by multichannel linear filtering, the primary reflection sequence will have undergone some phase and frequency distortion on the resulting record. The signal to noise power ratio then becomes less meaningful a criterion for designing the optimum linear multichannel filter, and the mean square criterion is adopted. In general, however, since more a priori information about the seismic traces is required to design the optimum linear multichannel filter than required for the optimum set of weights of the horizontal stacking process, the former will be an improvement over the latter. It becomes evident that optimum horizontal stacking is a restricted form of linear multichannel filtering.  相似文献   

4.
Several types of multichannel filters have been introduced in the past with the purpose of rejecting, in a seismic section, coherent noise having a slope different from that of the signal. These filters, generally, tend to introduce a certain amount of mixing and therefore the output trace shows increased horizontal coherence. This is due to the model on which these filters are based, since the hypothesis is posed that the reflectors are continuous. This may be dangerous since it could lead to mistaken interpretations, for example when small faults or breaks are made to disappear in the output section. Other problems that could arise in the application of multichannel filters after-stack are space-aliasing and high-pass filtering. The former occurs when coherent noise is rejected with apparent Velocity V and frequency fa=V/X, where X is the distance between traces. In this case, the signal also is distorted since it is rejected in the same frequency range. The high pass filtering effect occurs when the multichannel filter is designed to remove low coherent noise with high apparent velocity. In the paper a family of multichannel filters is presented based on a model of the seismic section such that minimum mixing effects appear. The filters are designed to give good results even in the case of low frequency and high velocity coherent noise. Some practical examples are shown.  相似文献   

5.
Wiener ‘spiking’ deconvolution of seismic traces in the absence of a known source wavelet relies upon the use of digital filters, which are optimum in a least-squares error sense only if the wavelet to be deconvolved is minimum phase. In the marine environment in particular this condition is frequently violated, since bubble pulse oscillations result in source signatures which deviate significantly from minimum phase. The degree to which the deconvolution is impaired by such violation is generally difficult to assess, since without a measured source signature there is no optimally deconvolved trace with which the spiked trace may be compared. A recently developed near-bottom seismic profiler used in conjunction with a surface air gun source produces traces which contain the far-field source signature as the first arrival. Knowledge of this characteristic wavelet permits the design of two-sided Wiener spiking and shaping filters which can be used to accurately deconvolve the remainder of the trace. In this paper the performance of such optimum-lag filters is compared with that of the zero-lag (one-sided) operators which can be evaluated from the reflected arrival sequence alone by assuming a minimum phase source wavelet. Results indicate that the use of zero-lag operators on traces containing non-minimum phase wavelets introduces significant quantities of noise energy into the seismic record. Signal to noise ratios may however be preserved or even increased during deconvolution by the use of optimum-lag spiking or shaping filters. A debubbling technique involving matched filtering of the trace with the source wavelet followed by optimum-lag Wiener deconvolution did not give a higher quality result than can be obtained simply by the application of a suitably chosen Wiener shaping filter. However, cross correlation of an optimum-lag spike filtered trace with the known ‘actual output’ of the filter when presented with the source signature is found to enhance signal-to-noise ratio whilst maintaining improved resolution.  相似文献   

6.
Optimum multichannel filters can be designed to process seismic events falling on hyperbolic moveout curves using the conventional least-squares method. Contrary to the linear moveout filters, autocorrelation and crosscorrelation functions inherent in the normal equations have to be computed numerically. However, computation times of filter coefficients are comparable to linear moveout operators. For a given source-receiver geometry and assuming straight ray-path, relative moveout of a seismic reflection event is dependent on the two way arrival time and rms velocity. Consequently, to avoid overlapping of pass and reject moveout windows, hyperbolic moveout filters have to be designed over time gates rather than for the whole record lengths. Hyperbolic and hyperbolic-linear moveout filters applied to synthetic and field seismic reflection traces show good signal-to-noise (S/N) ratio improvements. Results of some combined synthetic and field data examples are presented.  相似文献   

7.
Different types of median-based methods can be used to improve multichannel seismic data, particularly at the stacking stage in processing. Different applications of the median concept are described and discussed. The most direct application is the Simple Median Stack (SMS), i.e. to use as output the median value of the input amplitudes at each reflection time. By the Alpha-Trimmed Mean (ATM) method it is possible to exclude an optional amount of the input amplitudes that differ most from the median value. A more novel use of the median concept is the Weighted Median Stack (WMS). This method is based on a long-gapped median filter. The implicit weighting, which is purely statistical in nature, is due to the edge effects that occur when the gapped filter is applied. By shifting the traces around before filtering, the maximum weight may be given to, for example, the far-offset traces. The fourth method is the Iterative Median Stack (IMS). This method, which also includes a strong element of weighting, consists of a repeated use of a gapped median filter combined with a gradual shortening of the filter after each pass. Examples show how the seismic data can benefit from the application of these methods.  相似文献   

8.
在浅水情况下,由于观测数据中缺少近偏移距信息,水层多次波的压制面临挑战.利用多道预测算子压制水层多次波是浅水环境下压制多次波的重要方法之一,这种方法先从输入数据中估计出多道预测算子,再将预测算子和输入数据做褶积预测出水层相关多次波.然而,估计的多道预测算子很容易受噪声污染,从而影响多次波模型的精度.所以,我们提出了改进的多道预测算子压制浅水多次波方法.该方法先从数据中估计出多道预测算子,并利用估计的算子构建出精确的水层模型;然后,通过计算算子的走时信息、估计振幅信息、合成新算子三个步骤来修正原始的多道预测算子.修正的算子不仅不受噪声影响,还含有精确的走时信息、可靠的振幅信息;最后,该方法用修正的算子来预测多次波,并结合自适应相减,将预测的多次波从输入数据中去除.通过合成数据和实际资料的验证表明,相比于原始的多道预测算子压制多次波方法,改进的方法能够取得更好的压制效果.  相似文献   

9.
Filter formulation and wavefield separation of cross-well seismic data   总被引:1,自引:0,他引:1  
Multichannel filtering to obtain wavefield separation has been used in seismic processing for decades and has become an essential component in VSP and cross-well reflection imaging. The need for good multichannel wavefield separation filters is acute in borehole seismic imaging techniques such as VSP and cross-well reflection imaging, where strong interfering arrivals such as tube waves, shear conversions, multiples, direct arrivals and guided waves can overlap temporally with desired arrivals. We investigate the effects of preprocessing (alignment and equalization) on the quality of cross-well reflection imaging wavefield separation and we show that the choice of the multichannel filter and filter parameters is critical to the wavefield separation of cross-well data (median filters, fk pie-slice filters, eigenvector filters). We show that spatial aliasing creates situations where the application of purely spatial filters (median filters) will create notches in the frequency spectrum of the desired reflection arrival. Eigenvector filters allow us to work past the limits of aliasing, but these kinds of filter are strongly dependent on the ratio of undesired to desired signal amplitude. On the basis of these observations, we developed a new type of multichannel filter that combined the best characteristics of spatial filters and eigenvector filters. We call this filter a ‘constrained eigenvector filter’. We use two real data sets of cross-well seismic experiments with small and large well spacing to evaluate the effects of these factors on the quality of cross-well wavefield separation. We apply median filters, fk pie-slice filters and constrained eigenvector filters in multiple domains available for these data sets (common-source, common-receiver, common-offset and common-midpoint gathers). We show that the results of applying the constrained eigenvector filter to the entire cross-well data set are superior to both the spatial and standard eigenvector filter results.  相似文献   

10.
Wavenumber aliasing is the main limitation of conventional optimum least-squares linear moveout filters: it prevents adequate reject domain weighting for efficient coherent noise rejection. A general frequency domain multichannel filter design technique based on a one-to-one mapping method between two-dimensional (2D) space and one-dimensional (1D) space is presented. The 2D desired response is mapped to the 1D frequency axis after a suitable sorting of the coefficients. A min-max or Tchebycheff approximation to the desired response is obtained in the 1D frequency domain and mapped back to the 2D frequency domain. The algorithm is suitable for multiband 2D filter design. No aliasing damage is inherent in the linear moveout filters designed using this technique because the approximation is done in the frequency-wavenumber (f, k)-domain. Linear moveout filters designed by using the present coefficient mapping technique achieve better pass domain approximations than the corresponding conventional least-squares filters. Compatible reject domain approximations can be obtained from suitable mappings of the origin coefficient of the desired (f k)-response to the 1D frequency axis. The (fk)-responses of linear moveout filters designed by using the new technique show equi-ripple behavior. Synthetic and real data applications show that the present technique is superior to the optimum least-squares filters and straight stacking in recovering and enhancing the signal events with relatively high residual statics. Their outputs also show higher resolution than those of the optimum least-squares filters.  相似文献   

11.
基于非因果滤波器的多次波匹配相减方法(英文)   总被引:1,自引:0,他引:1  
在常规多道匹配滤波方法中的滤波器是物理可实现的因果滤波器,只能实现地震信号序列延迟的滤波。本文提出了最小二乘意义下的非因果多道输入多道输出维纳滤波方法,通过比较多道匹配相减中因果和非因果滤波方法之间的差别,验证了方法的有效性,解决了模型数据滞后于实际数据的情况。而且,通过定义长度随偏移距和层速度变化的滑动时窗,解决了匹配时窗内同相轴数量随偏移距增大而增加的问题。并将上述方法应用到改进的扩展多道匹配相减去除多次波的方法中,利用Pluto1.5理论模拟数据,对非因果滤波器和变长度时窗的匹配相减方法进行测试,取得了很好的去除多次波后的地震数据。  相似文献   

12.
The values of the filter coefficients used for the computation of electromagnetic sounding curves are studied in conjunction with the values of the input function to the filter, or the range of values which the input function may assume, and the filters are broken off at such a place that the error in the sum of the products of filter coefficient and input function does not exceed a prescribed value. This analysis is carried out for the horizontal coils system, the perpendicular coils system, and the vertical coplanar coils system. The lengths of the filters so derived depend on the layer parameters, the frequency and the coil spacing. Even in the most unfavourable cases the filters are shorter than the filters published by Koefoed, Ghosh, and Polman (1972).  相似文献   

13.
The calculation of dip moveout involves spreading the amplitudes of each input trace along the source-receiver axis followed by stacking the results into a 3D zero-offset data cube. The offset-traveltime (x–t) domain integral implementation of the DMO operator is very efficient in terms of computation time but suffers from operator aliasing. The log-stretch approach, using a logarithmic transformation of the time axis to force the DMO operator to be time invariant, can avoid operator aliasing by direct implementation in the frequency-wavenumber (f–k) domain. An alternative technique for log-stretch DMO corrections using the anti-aliasing filters of the f–k approach in the x-log t domain will be presented. Conventionally, the 2D filter representing the DMO operator is designed and applied in the f–k domain. The new technique uses a 2D convolution filter acting in single input/multiple output trace mode. Each single input trace is passed through several 1D filters to create the overall DMO response of that trace. The resulting traces can be stacked directly in the 3D data cube. The single trace filters are the result of a filter design technique reducing the 2D problem to several ID problems. These filters can be decomposed into a pure time-delay and a low-pass filter, representing the kinematic and dynamic behaviour of the DMO operator. The low-pass filters avoid any incidental operator aliasing. Different types of low-pass filters can be used to achieve different amplitude-versus-offset characteristics of the DMO operator.  相似文献   

14.
A new spectral factorization method is presented for the estimation of a causal as well as a causally invertible ARMA operator from the correlation sequence of seismic traces. The method has been implemented for multichannel deconvolution of seismic traces with the aim of exploiting the trace-to-trace correlation that exists within seismograms. A layered earth model with a small reflectivity sequence has been considered, and the seismic traces have been considered as the output of a linear system driven by white noise reflection coefficient sequences. The present method is the concatenation of three algorithms, namely Kung's method for state variable ( F , G , H ) realization using a singular value decomposition (SVD) algorithm, Faurre's technique for computation of the strong spectral factor and Leverrier's algorithm for ARMA representation of the spectral factor. The inverted ARMA operator is used as a recursive filter for deconvolution of seismic traces. In the example shown, two traces with a covariance sequence of 160 ms length have been considered for multichannel deconvolution of stacked seismic traces. The results presented, when compared with those obtained from a conventional deconvolution algorithm, have shown encouraging prospects.  相似文献   

15.
The theory of statistical communication provides an invaluable framework within which it is possible to formulate design criteria and actually obtain solutions for digital filters. These are then applicable in a wide range of geophysical problems. The basic model for the filtering process considered here consists of an input signal, a desired output signal, and an actual output signal. If one minimizes the energy or power existing in the difference between desired and actual filter outputs, it becomes possible to solve for the so-called optimum, or least squares filter, commonly known as the “Wiener” filter. In this paper we derive from basic principles the theory leading to such filters. The analysis is carried out in the time domain in discrete form. We propose a model of a seismic trace in terms of a statistical communication system. This model trace is the sum of a signal time series plus a noise time series. If we assume that estimates of the signal shape and of the noise autocorrelation are available, we may calculate Wiener filters which will attenuate the noise and sharpen the signal. The net result of these operations can then in general be expected to increase seismic resolution. We show a few numerical examples to illustrate the model's applicability to situations one might find in practice.  相似文献   

16.
Median filters may be used with seismic data to attenuate coherent wavefields. An example is the attenuation of the downgoing wavefield in VSP data processing. The filter is applied across the traces in the ‘direction’ of the wavefield. The final result is given by subtracting the filtered version of the record from the original record. This method of median filtering may be called ‘median filtering operated in subtraction’. The method may be extended by automatically estimating the slowness of coherent wavefields on a record. The filter is then applied in a time- and-space varying manner across the record on the basis of the slowness values at each point on the record. Median filters are non-linear and hence their behaviour is more difficult to determine than linear filters. However, there are a number of methods that may be used to analyse median filter behaviour: (1) pseudo-transfer functions to specific time series; (2) the response of median filters to simple seismic models; and (3) the response of median filters to steps that simulate terminating wavefields, such as faults on stacked data. These simple methods provide an intuitive insight into the behaviour of these filters, as well as providing a semiquantitative measurement of performance. The performance degradation of median filters in the presence of trace-to-trace variations in amplitude is shown to be similar to that of linear filters. The performance of median filters (in terms of signal distortion) applied obliquely across a record may be improved by low-pass filtering (in the t-dimension). The response of median filters to steps is shown to be affected by background noise levels. The distortion of steps introduced by median filters approaches the distortion of steps introduced by the corresponding linear filter for high levels of noise.  相似文献   

17.
The design of least-squares optimum filters is based upon minimizing a suitably defined error criterion. The expected value of this error is easily computable after the coefficients of the filter have been determined. When a particular filtering problem is specified, there are several parameters which are specifically not included in the optimization procedure. However, the magnitude of the expected error may be quite sensitive to these parameters. The examination of the relative values of the expected error for variations of these unspecified parameters may lead to a better definition of the filter problem. The parameters which are left unspecified by the general least-square filter definition include: 1. The addition of white noise to the signal autocorrelation to stabilize the filter behavior. 2. The specification of the shape of the desired output of the filter. 3. The specification of the lag between the desired output and the input. Examples are given showing the relationship between these parameters and the value of the expected error.  相似文献   

18.
二维最佳线性数字滤波器的设计原理   总被引:2,自引:0,他引:2       下载免费PDF全文
针对如何在干扰场的背景上区分出低缓异常,以及在位场的向下延拓一类计算中如何限制因误差的高频放大所导至的解的不稳定性等问题,本文探讨了在“最小二乘”意义下的最佳线性数字滤波器的设计原理,并将它转化为下述数学问题,即在L2线性赋范函数空间中如何选取最佳滤波函数的问题。在空间域中直接解这个问题是十分复杂和困难的,我们发现在波数域中用变分法中的等周问题的解法直接选取最佳线性滤波器的传输函数(或波数响应),则在数学方法上既简单又严格。这样选取的最佳线性滤波器的传输函数L(f,k)其表达式也很简单,即L(f,k)=|Si(f,k)|2/{|Si(f,k)|2+λ|Ni(f,k)|2}。式中,|Si(f,k)|2及|Ni(f,k)|2分别代表滤波器输入端讯号和干扰的能谱(或功率谱),f、k分别代表x、y方向上的波数,λ为大于零的常数。 对上述两类问题以及相关的两种最佳线性滤波器而言,L(f,k)的表达式是相同的,而区别仅在于其参变量λ的选取条件不同而已。 有了最佳线性滤波器的传输函数L(f,k)的理论公式,就可以在最小二乘的意义下分析和评价国内外所发表的解决上述两类问题的各种线性滤波方法,并能指出在不同的讯号与干扰条件下,在理论上线性滤波可能达到的最佳效果,从而为设计二维线性数字滤波器时,提供一个理论上的准则。 对位  相似文献   

19.
The delay‐time Radon transform parametrizes coherent events in a seismic gather by the far‐offset trace delay time, instead of the conventional parabolic curvature or ray parameter. The reformulation may give a different physical insight into the aliasing effect in the Radon transformation and may also lead to a different algorithm. The delay‐time parametrization enables modelling of a seismic gather as the sum of coherent events with any form of moveout curve. For example, a parabolic curve can be used for traces within a moderate offset range and a linear moveout for far‐offset traces. When using this delay‐time Radon transform, it is the number of traces, rather than the spatial sampling, of the input gather that directly controls aliasing in the Radon transform image. A preconditioning operator that implicitly increases the number of input traces by spatial reconstruction (without physically performing the spatial resampling) may minimize aliasing noise in the Radon transform image.  相似文献   

20.
Attenuation of random noise and enhancement of structural continuity can significantly improve the quality of seismic interpretation. We present a new technique, which aims at reducing random noise while protecting structural information. The technique is based on combining structure prediction with either similarity‐mean filtering or lower‐upper‐middle filtering. We use structure prediction to form a structural prediction of seismic traces from neighbouring traces. We apply a non‐linear similarity‐mean filter or an lower‐upper‐middle filter to select best samples from different predictions. In comparison with other common filters, such as mean or median, the additional parameters of the non‐linear filters allow us to better control the balance between eliminating random noise and protecting structural information. Numerical tests using synthetic and field data show the effectiveness of the proposed structure‐enhancing filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号