首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11-12 kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

2.
The deep ocean floor between the Clarion and Clipperton fracture zones (NE equatorial Pacific) has the highest known manganese nodule abundance in the world oceans. A detailed analysis of MR1 (Mapping Researcher 1, 11–12?kHz) sonar images and free-fall grab data in the Korean manganese nodule field areas reveals a close relationship between side-scan sonar characteristics of the seafloor and manganese nodule abundance. Eight sonar facies are identified based on back-scattering intensity and distribution patterns. These sonar facies can be interpreted as (1) volcanic seamounts (facies I-1), (2) bounding faults of abyssal hills (facies I-2 and II-1), (3) lava flows or volcanoclastic mass-flow deposits around the volcanic seamounts (facies I-3 and II-2), (4) crests of abyssal hills (facies II-1), (5) abyssal troughs between abyssal hills (facies III-1), (6) relatively flat areas (facies II-3 and III-2). In the areas where facies II-1 (abyssal hill crests with thin sediment cover) and II-3 (relatively flat areas draped by thin sediments) are dominant, manganese nodules occur abundantly. In contrast, zones comprising facies III-1 (abyssal troughs with thick sediment cover) and III-2 (relatively flat areas covered by thick sediments) are characterized by low abundance of manganese nodules. This relationship between distribution of sonar facies and manganese nodule abundance implies that (1) the qualitative difference in acoustic reflectivity of long-range side-scan sonar with some ground truth data is useful for regional assessment of manganese nodule occurrence over wide areas in a reasonable time, and (2) seafloor topography and sediment thickness are important controlling factors for regional occurrences of manganese nodules.  相似文献   

3.
A wealth of geologic information has been collected during studies of the Matuyama/Brunhes magnetic reversal boundary on the East Pacific Rise at 21°N. Five ALVIN and two CYANA dives, and a series of deep-tow traverses show that abyssal hills in this region of the Pacific are created near the spreading axis by inward dipping normal faulting and by back-tilting of these fault blocks. Outward dipping faults occur but are of less importance in the creation of relief. Tectonic disruption of the crust, particularly through tilting, is less pronounced than in the Atlantic. Small volcanoes approximately 50 m high and 400 m wide are common on the abyssal hills. A significant number of the volcanoes may have split apart at the spreading axis attesting to the narrowness of the crustal accretion zone on the East Pacific Rise. Active faulting is restricted to less than 10 to 12 km off-axis, although minor recent faulting may have been detected 23 km off-axis. Crustal sections exposed by faulting reveal that massive lava flows and sheet flows are common in the upper portion of oceanic layer two, but are less abundant than pillow lavas.  相似文献   

4.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   

5.
A simple dissolved silica (Si) and dissolved oxygen (O) diagram method was applied to study the deep-water circulation in the North Pacific and the following results and conclusion have been obtained. In the abyssal water flowing northward in the western Pacific Si increases with a constant ratio of Si to decreasing O(Si/O=–0.30). The water is designated as the main sequence. In the eastern Pacific the Si-O diagram is characteristic of the location and reflects the degrees of mixing with older waters and of alteration due to decomposition of biogenic material. The Bay of Alaska is found to be a great source of silica in the North Pacific and its bottom water spreads out to the central North Pacific north of 40°N, called here the abyssal front. The younger abyssal water in the Aleutian Trench flowing to the eastern North Pacific north of 40°N comes through the north end of the Kuril-Kamchatka Trench instead of the gap in the Emperor Seamounts at about 46°N. The deep water is almost completely homogenized by active isopycnal mixing and advection when the deep water reaches its upper boundary by upwelling in the western North Pacific including the Bering Sea. Thus the high productivity in the Bering Sea is principally caused neither by the direct supply of abyssal water rich in nutrients nor by the extremely active vertical mixing reaching depths greater than 500 m, but it may be caused simply by the shallower upper boundary of the deep water mass in the Bering Sea, from which nutrients are easily transported to the surface.  相似文献   

6.
A 2°×2° map of spreading centres and fracture zones surrounding the Indian Ocean RRR triple junction, at 25.5°S, 70°E, is described from a data set of GLORIA side-scan sonar images, bathymetry, magnetic and gravity anomalies. The GLORIA images show a pervasive fabric due to linear abyssal hills oriented parallel to the two medium-spreading ridges (the Central Indian Ridge (CIR) and Southeast Indian Ridge (SEIR)). A cuvature of the fabric occurs along fracture zones, which are also located by lows in the bathymetry and gravity data and by offsets between magnetic anomalies. The magnetic anomalies also record periods of asymmetric spreading marking the development of the fracture zones, including the birth, at anomaly 2A, of a short fracture zone 50 km north of the triple junction on the CIR, and its death near the time of the Jaramillo anomaly. In some localities, a fine-scale fabric corresponds to a coarser fabric on the opposite flank of the CIR, possibly indicating a persistent asymmetry in the faulting at the median valley walls if the fabric has a tectonic and not a volcanic origin. A plate velocity analysis of the triple junction shows that both the CIR and Southwest Indian Ridge (SWIR) are propagating obliquely; the CIR appears to form an oblique trend by segmenting into a series of almost normally-oriented segments separated by short-offset fracture zones. For the last 4 m.y., the abyssal hill lineations indicate that the CIR segment immediately north of the triple junction has been spreading with an average 10° obliquity. The present small 5 km offset of the centres of the CIR and SEIR median valleys (Munschy and Schlich, 1989) is shown to be the result of this obliquity and a 30% spreading asymmetry between anomaly 2 and the Jaramillo on the CIR segment immediately north of the triple junction.  相似文献   

7.
Abyssal hills were delineated in a 185 × 185-km area by an 18.5 × 18.5-km grid of narrow-beam bathymetric and geophysical profiles in oceanic crust of Cretaceous age near 23°N latitude, 31°W longitude. The abyssal hills are similar to features located along flow lines of sea-floor spreading near the crest of the Mid-Atlantic Ridge. This similarity indicates a primary origin for these abyssal hills related to axial processes at a mid-oceanic ridge involving construction (igneous) and tectonics (faulting), and secondary modification by volcanic activity.  相似文献   

8.
A corridor 315 km wide centered along the southeast projection of the Atlantis fracture zone between 21°W and 29°W was investigated with seismic reflection, bathymetric, gravity, and magnetic profiles. Six sub-parallel, sediment-filled troughs in acoustic basement trend about 106° across the abyssal hills and lower continental rise off northwest Africa. Where the southernmost structural lineations cross the abyssal plain, they are interrupted by a ridge trending 080° surmounted by volcanic peaks.The structural lineations become less distinct landward of the western margin of the abyssal plain coincident with a decrease in topographic relief on acoustic basement and increasing sediment thickness. This transition is coincident with a reduction in the amplitude of gravity and magnetic anomalies.  相似文献   

9.
Sedimentologic and stratigraphic investigations on four cores collected close to the front of the Barbados accretionary prism provided information about the Quaternary depositional processes and sediment fluxes in the region. The morphology of the prism is marked by N—Soriented anticlinal ridges separated by troughs. The deposits are hemipelagic on top of the ridges and in the abyssal plain, with a mean global flux of 1.35–1.40 g cm–2 10–3 yr. The carbonate flux decreases from the prism to the abyssal plain (0.49 and 0.3 g cm–2 10–3 yr, respectively). Terrigenous material is provided by distal turbiditic plumes. It decreases slightly from the abyssal plain to the prism (1.06 and 0.9 g cm–2 10–3 yr, respectively). During cold climatic stages, it is up to 1.4 g cm–2 10–3 yr. The global flux is much higher (7.1 g cm–2 10–3 yr) in the interridge troughs, which act as sediment traps for distal turbidity currents.  相似文献   

10.
Soft-shelled monothalamous foraminifera, including species belonging to the suborders Allogromiida and Astrorhizida (families Saccamminidae and Psammosphaeridae), are an abundant and diverse component of the meiofauna in the deep NE Atlantic but have never been systematically documented in the Pacific Ocean. We examined the 32–63 µm and >63 µm fractions of a sample (0–1 cm layer, surface area 52.8 cm2) from an abyssal plain in the subarctic North Pacific, close to the Aleutian Trench (48°05.43 N, 176°55.06 E; 5289 m water depth). The residues yielded an estimated 2876 stained foraminifera (=545 per 10 cm2) of which >75% occurred in the upper 0.5 cm layer and almost half in the 32–63 µm fraction. Rather less than a third (30.5%) of individuals, and about half of the morphospecies (56 out of 121), were soft-shelled monothalamous forms. Many of these, particularly the saccamminids, were tiny, <120 µm in maximum dimension. Based on our analysis of this sample, and previous results in the North Atlantic and NW Indian Oceans, we suggest that these poorly known taxa are a consistently important component of the abyssal meiofauna in well-oxygenated areas.  相似文献   

11.
A deeply-towed instrument package was used in a detailed survey of the crest of the East Pacific Rise (EPR) near 3°25S, where the Pacific and Nazca plates are separating at 152 mm/yr. A single 90 km-long traverse of the rise crest extends near-bottom observations onto the rise flanks. A ridge at the spreading axis is defined by its steep regional slopes, probably caused by rapid crustal contraction as the spreading magma chamber freezes, rather than by outward-facing fault scarps. It can be divided into a marginal horst-and-graben zone with low (<50 m), symmetric fault blocks, and a 2 km-wide elongate axial shield volcano that is unfaulted except for a narrow crestal rift zone. This has a summit graben (10–35 m deep) probably formed by caldera collapse, and narrow pillow basalt walls built over vent fissures. Small, low (<50 m) volcanic peaks occur on the shield volcano and the horst-and-graben zone, and some may have been built away from the spreading axis. Major plate-building lava flows issue from the crestal rift zone and flow an average of 500 m down the sides of the volcano. The marginal horst-and-graben zone results from tensional faulting of a thin crust of lava, and evolves by progressive shearing on inclined fault planes. Crustal extension continues at least as far as 20 km from the axis, and the large, long fault blocks formed in thicker crust beyond the subaxial magma chamber develop into abyssal hills. Pelagic sedimentation, at a maximum rate of 22 m/106 years, gradually infills open fissures and smooths the small-scale roughness of the fault blocks. Off-axis volcanism has also resulted in smoother crust, and built seamounts.Comparison of the EPR at 3°25S with the Famous Rift and Galapagos Rift reveals a similarity in the processes and small-scale landforms at fast, medium and slow-spreading ridges. There are significant differences in the medium-scale landforms, probably because plate-boundary volcanic and tectonic processes act on crust of very different strength, thickness, and age.Contribution of the Scripps Institution of Oceanography, new series.  相似文献   

12.
The axis of the East Pacific Rise is defined by a topographic block about 15 km wide and 300 to 350 m high which is flanked by abyssal hills 100 to 200 m high and 3 to 5 km wide. These hills often are tilted such that their steep slopes face the axis. An empirical model explaining these features combines axial extrusion to form the central block and rotational faulting to lower the shoulders of the axial block to the regional depth and tilt them outward.The axial block is offset about 10 km left-laterally at 10.0°S and a similar amount right-laterally at 11.5°S. Offsets (or lack of offsets) of young magnetic anomalies indicate that these axial displacements occurred between 1.7 and 0.9 m.y. ago and 0.7 m.y. ago and the present in the north and south. respectively. These small axial offsets are interpreted to be the result of either brief episodes of asymmetric see-floor spreading or discrete jumps in the site of spreading activity. Both axial shifts were to the west; a unidirectional sequence of such shifts occurring at the above rate of one per million years would be difficult to differentiate from true regional asymmetric spreading and might explain that phenomenon on other medium-to fast-spreading rises.Reconnaissance data from the east flank of the East Pacific Rise indicate that spreading activity began on that part of the rise between the 9°S and 13.5°S fracture zones approximately 8.2 m.y. ago when the site of crustal accretion jumped westward from the now dormant Galapagos Rise. Slope change in crust approximately 2 and 6 m.y. old imply faster spreading rates between about 6 and 2 m.y. ago than either before or after that time. Identification and correlation of anomaly 3 allows an estimate of about 90 mm/y for this higher east flank spreading rate. Since 1.7 m.y. ago spreading rates have averaged about 80 mm/y to the west and 77 mm/y to the east.  相似文献   

13.
The Australian-Antarctic Discordance (AAD) is an anomalously deep and rugged zone of the Southeast Indian Ridge (SEIR) between 120° E and 128° E. The AAD contains the boundary between the Indian Ocean and Pacific Ocean isotopic provinces. We have analyzed SeaMarc II bathymetric and sidescan sonar data along the SEIR between 123° E and 128° E. The spreading center in the AAD, previously known to be divided into several transform-bounded sections, is further segmented by nontransform discontinuities which separate distinct spreading cells. Near the transform which bounds the AAD to the east, there is a marked change in the morphology of the spreading center, as well as in virtually every measured geochemical parameter. The spreading axis within the Discordance lies in a prominent rift valley similar to that observed along the Mid-Atlantic Ridge, although the full spreading rate within the AAD is somewhat faster than that of slow-spreading centers (~ 74 mm a–1 vs. 0–40 mm a–1). The AAD rift valleys show a marked contrast with the axial high that characterizes the SEIR east of the AAD. This change in axial morphology is coincident with a large (~ 1 km) deepening of the spreading axis. The segmentation characteristics of the AAD are analogous to those of the slow-spreading Mid-Atlantic Ridge, as opposed to the SEIR east of the AAD, which exhibits segmentation characteristics typical of fast-spreading centers. Thus, the spreading center within and east of the AAD contains much of the range of global variability in accretionary processes, yet it is a region free from spreading rate variations and the volumetric and chemical influences of hotspots. We suggest that the axial morphology and segmentation characteristics of the AAD spreading centers are the result of the presence of cooler than normal mantle. The presence of a cool mantle and the subsequent diminution of magma supply at a constant spreading rate may engender the creation of anomalously thick brittle lithosphere within the AAD, a condition which favor, the creation of an axial rift valley and of thin oceanic crust, in agreement with petrologic studies. The morphologies of transform and non-transform discontinuities within the Discordance also possess characteristics consistent with the creation of anomalously thick lithosphere in the region. The upper mantle viscosity structure which results from lower mantle temperatures and melt production rates may account for the similarity in segmentation characteristics between the AAD and slow-spreading centers. The section of the AAD which overlies the isotopic boundary is associated with chaotic seafloor which may be caused by an erratic pattern of magmatism and/or complex deformation associated with mantle convergence. Finally, the pattern of abyssal hill terrain within a portion of the AAD supports previous models for the formation of abyssal hills at intermediate- and slow-spreading ridges, and provides insights into how asymmetric spreading is achieved in this region.  相似文献   

14.
The Foreslope Hills are a series of ridges and troughs covering over 60 km2 of the sea floor at the base of the Fraser Delta slope. Internally, the hills consist of blocks of prodelta and delta slope sediment (> 10.6 km3) bounded by offshore dipping faults and shear planes. Stratification within each block generally dips landward, indicating rotational failure. The amount of downslope translation of delta slope sediments was relatively minor. Deformation is restricted to a deep structural trough, suggesting failure resulted from yielding of soft underlying (early Holocene) prodelta sediments in the trough.  相似文献   

15.
Hydrographic casts down to the bottom along two zonal sections at 12°N and 13°N (from 144°E to 127°E) were made with a CTD. Their analysis verified the existence of cold and saline abyssal water between the Mariana Ridge and the Kyushu-Palau Ridge. This result provides evidence of flow into the Philippine Sea through the deep gap called the Yap-Mariana Junction. The properties of deep water are variable in the West Mariana basin but quite homogeneous in the Philippine Basin, indicating the transitional nature in the West Mariana Basin and the existence of older bottom water in the Philippine Basin. A close examination suggests that the bottom water is slightly colder in the western part of the Philippine Basin than in the eastern part of the basin. This slightly colder deep water with a hundred kilometer scale in the western Philippine Basin might be related to a broad western boundary current flowing equatorward along the eastern rise of the Philippine Trench.  相似文献   

16.
A sampling expedition has shown that largely hydrogenetic marine ferromanganese deposits occur in the Christmas Island region south of Java (~10°S), as small nodules on seamount slopes and abyssal plains (red clay), and as thick crusts on volcanic ridges and seamounts. Vernadite is dominant, with birnessite, jacobsite and todorokite common. Nodules were recovered in 25% of free-fall grab stations in water 4600-5900 m deep, and are not abundant where present. The nodules average 9.6% Fe, 19.7% Mn, 0.51% Ni, 0.49% Cu, and 0.12% Co. Crusts are common in water 1450-3700 m deep, with average deposition rates of 1-1.5 mm / m.y. The crusts average 13.9% Fe, 16.2% Mn, 0.35% Ni, 0.11% Cu, and 0.44% Co. Cobalt grades are higher (~0.8%) in shallower water ( < 2500 m), so future exploration should concentrate on depths of 500-1500 m near the oxygen minimum zone.  相似文献   

17.
The properties of the Antarctic Bottom Water flow in the region of its inflow to the channel of the Romanche Fracture Zone at 22°10′–22°30′ W are studied on the basis of CTD and LADCP profiling in the western part of the equatorial fracture zone. A deep water cataract was found at the sill over the southern wall of the fracture with a depth of approximately 4600 m, which is associated with the abyssal flow, whose potential temperature is lower than 1°C. The inflow of water into the channel of the fracture in this temperature range is fully localized over this sill. The minimum potential temperature θ recorded in 2011 near the bottom was equal to 0.51°C, which is lower approximately by 0.12°C than the minimum temperatures ever measured in the western part of the fracture. The water transport in the cataract was estimated at 0.2 Sv (1 Sv = 106 m3/s), which is approximately 30% of the known estimates of the total transport of Antarctic Bottom Water (θ < 1.9°C) through the fracture. The extremely high intensity of the cross isothermal mixing in the cataract region was found. The analysis of the bottom topography data, including the historical WOD09 dataset, shows that the inflow of water with 1.00° < θ < 1.70°C into the channel of the fracture is most likely fully localized in a few passages in the region of the survey in 2011, while the water exchange with the abyssal waters with θ > 1.70°C through the Romanche Fracture Zone between the West and East Atlantic can also occur through the depressions in the southern and northern walls of the fracture in the region of the Vema Deep.  相似文献   

18.
Morphology of a seamount at 12°35'E and 76°18.5’ and two abyssal hills in its vicinity is described using the Hydrosweep multibeam‐swath bathymetric system. The height of the seamount is 1350 m, and it occupies an area of 330 km2. Its basal width is 22.5 km, and the mount has a gentle and longer western flank and a steep and shorter eastern flank. There is a characteristic terracelike feature on the western flank, about 300 m from the top. A caldera is also observed on top of the seamount. Slope angles in this area are high (over 35"). Results of morphologic studies of the seamount from the multibeam survey are comparable to those from a narrow‐beam echosounding survey. The origin of the seamount may be related to the presence of a fracture zone at 75°45'E.  相似文献   

19.
The aim of this study is to compare the depth distributions of four major Southern Ocean macrobenthic epi- and infaunal taxa, the Bivalvia, Gastropoda, Isopoda, and Polychaeta, from subtidal to abyssal depth. All literature data up to summer 2008, as well as the unpublished data from the most recent ANDEEP I–III (Antarctic benthic deep-sea biodiversity: colonisation history and recent community patterns) expeditions to the Southern Ocean deep sea are included in the analysis. Benthic invertebrates in the Southern Ocean are known for their wide bathymetric ranges. We analysed the distributions of four of the most abundant and species-rich taxa from intertidal to abyssal (5200 m) depths in depth zones of 100 m. The depth distributions of three macrofaunal classes (Bivalvia, Gastropoda, Polychaeta) and one order (Isopoda) showed distinct differences. In the case of bivalves, gastropods and polychaetes, the number of species per depth zone decreased from the shelf to the slope at around 1000 m depth and then showed stable low numbers. The isopods showed the opposite trend; they were less species rich in the upper 1000 m but increased in species numbers from the slope to bathyal and abyssal depths. Depth ranges of families of the studied taxa (Bivalvia: 31 families, Gastropoda: 60, Isopoda: 32, and Polychaeta: 46 families) were compiled and illustrated. At present vast areas of the deep sea in the Southern Ocean remain unexplored and species accumulation curves showed that only a fraction of the species have been discovered to date. We anticipate that further investigations will greatly increase the number of species known in the Southern Ocean deep sea.  相似文献   

20.
Deep circulation in the southwestern East/Japan Sea through the Ulleung Interplain Gap (UIG), a possible pathway for deep-water exchange, was directly measured for the first time. Five concurrent current meter moorings were positioned to effectively span the UIG between the islands of Ulleungdo to the west and Dokdo to the east. They provided a 495-day time series of deep currents below 1800 m depth spanning the full breadth of the East Sea Deep and Bottom Water flowing from the Japan Basin into the Ulleung Basin. The UIG circulation is found to be mainly a two-way flow with relatively weak southward flows directed into the Ulleung Basin over about two-thirds of the western UIG. A strong, persistent, and narrow compensating northward outflow occurs in the eastern UIG near Dokdo and is first referred to here as the Dokdo Abyssal Current. The width of the abyssal current is about 20 km below 1800 m depth. The low-frequency variability of the transports is dominated by fluctuations with a period of about 40 days for inflow and outflow transports. The 40-day fluctuations of both transports are statistically coherent, and occur almost concurrently. The overall mean transport of the deep water below 1800 m into the Ulleung Basin over the 16.5 months is about 0.005 Sv (1 Sv=106 m3 s?1), with an uncertainty of 0.025 Sv indicating net transport is negligible below 1800 m through the UIG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号