首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Mississippi River Delta Complex (MRDC) has experienced extensive wetland loss in the last century due, in part, to flood control levees that have isolated the lower Mississippi River and its sediment resource from adjacent wetlands. Reconnecting the River to these wetlands through diversions is being used and proposed on a larger scale for the future, to reduce wetland loss rates. However, some currently operating diversions (e.g., Caernarvon and Davis Pond) have been implicated in causing negative impacts on wetland ecosystem structure and function due to increased nutrient loads in diverted Mississippi River water combined with insufficient sediment delivery. Initial assessments of these concerns were carried out in a greenhouse setting where six nutrient enrichment treatment levels (control, NO3, NH4, PO4, SO4, and Combo [NO3?+?NH4?+?PO4?+?SO4]) were applied with and without sediment addition to 60 marsh sods from a Sagittaria lancifolia-dominated oligohaline wetland at rates simulating the Davis Pond Diversion of the Mississippi River. After 25 months, independent enrichment with N (regardless of form) and sediment was generally beneficial to wetland structure and function, while SO4 enrichment had the opposite effect, regardless of sediment addition. Simultaneous application of N and P (i.e., the Combo treatment level) ameliorated the negative impacts of SO4-loading, but the concurrent application of sediment did not, likely because the loading rate was based on a diversion that was designed to deliver water and not to maximize sediment input. Nonetheless, sediment input is critical to the sustainability of MRDC wetlands experiencing high rates of deterioration. Thus, optimizing future diversions to maximize sediment delivery, along with continued surveillance of negative nutrient effects, are recommended management decisions.  相似文献   

2.
3.
Significant progress has been made recently towards a better understanding of the nature, causes, and consequences of anthropogenic eutrophication of shallow coastal systems. It is well established that, in pristine systems dominated by seagrasses, incipient to moderate eutrophication often leads to the replacement of seagrasses by phytoplankton and loose macroalgal mats as the dominant producers. However, less is known about the interactions between phytoplankton and loose macroalgae at intense eutrophication. Using a combination of original research and literature data, we provide support for the hypothesis that substantial macroalgal decline may occur at intense eutrophication due to severe water column shading. Our results suggest that such declines may be widespread. However, we also show that intense eutrophication is not always necessarily conducive to severe water column shading and large macroalgal declines, possibly due to short water residence time and/or elevated grazing on phytoplankton. Furthermore, we provide support to the hypothesis that the occurrence of hypoxic/anoxic conditions in eutrophication-driven shifts in dominant primary producer assemblages influences the nature and extent of functional change in the system. Focusing on the macroalgal blooms and seagrass decline that often occur at incipient/moderate eutrophication, we show the blooms have a positive effect on epifaunal abundance under well-oxygenated conditions, but a negative effect if pervasive anoxic/hypoxic conditions develop with the bloom. These findings provide support to prior suggestions that secondary productivity in shallow coastal systems may increase as seagrasses get replaced by loose macroalgal stands if the stands remain well oxygenated. In concert, our results contribute to an improvement of our current model of eutrophication of shallow coastal systems and suggest that further effort should be put on ascertaining the mechanisms that may prevent severe water column shading and large macroalgal decline at intense eutrophication, as well as thorough documentation of the impacts of anoxic/hypoxic conditions on system functionality at different stages of eutrophication.  相似文献   

4.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   

5.
The extent and geometry of the obliquely subduced oceanic Pacific Plate beneath North Island, New Zealand, for five million year intervals through the mid-Miocene to Quaternary, are presented in a series of maps and cross-sections. These show that the subducted plate progressively increased its extent from NE to SW beneath the North Island, and in the more northern regions where it was first emplaced, concomitantly increased its dip from 10° to 50°.The changing extent and geometry of the subducted slab has been established from the age pattern of orogenic andesites and from the geochemical K2O-h parameter of depth of magma generation. The radiometric dates show a migration of the volcanic front back towards the trench at an average rate of 20 km/My. The trenchward migration is explained by a model of increasing slab dip which is corroborated by the K2O data calibrated against the presently active arc (Taupo Volcanic Zone). With the exception of northern Coromandel Peninsula, the andesitic magmas were generated at 85–100 km depth. The interpretation of the dates adopted here indicates that the subducted slab originated at the NE-SW trending Kermadec-Hikurangi Trench, and implies a different and much simpler evolution of the Australia-Pacific plate boundary in the vicinity of North Island than other recent models.Subduction geometry has been found elsewhere to be a principal influence upon the state of stress and deformational style in an over-riding plate. The possibility is explored that the timing, nature and pattern of the Neogene to Quaternary Kaikoura Orogeny in North Island is due to this influence. Apart from the effect of oblique subduction in eastern North Island, there is an accord between the onset of deformation and the emplacement sequence of the shallow slab beneath North Island, and between the change in subduction geometry and a progressive north to south change in northern North Island from compression to extension.  相似文献   

6.
根据矿物结构可以有效的识别开放性体系内的各种岩浆过程,在岩相学研究基础上,对全新世喷发的Ruapehu火山 Whakapapa组安山岩内的辉石斑晶进行了系统的矿物学分析。所研究样品中辉石斑晶以普通辉石及顽火辉石为主,具多样 结构与形态,根据其结构和成分特征可分为3类:(1)骸晶状的辉石(SP型),具有破碎的、筛孔状外形,核部具有异常高 的FeOT含量,可能为壳源捕掳晶;(2)具均一结构及成分的辉石(HP型),其内部未显示明显的熔融结构,形成于岩浆房 的内部,基本未受基性岩浆混合的影响;(3)具核-幔-边结构的 “绿核”辉石(GCP型),其幔部相比核部及边部具有更 高的En、Mg#、CaO、MgO和Cr2O3含量以及更低的FeOT、TiO2含量。且GCP辉石边部相比核部更加富CaO、MgO而贫 FeOT、TiO2。GCP型辉石幔部(边部)与核部形成明显的反环带结构,两者界线清晰,成分上存在突变,是偏基性岩浆注 入岩浆房边界层时,岩浆发生大规模扩散、混合之前形成于脉状岩浆“通道”内;而GCP辉石边部则结晶于混合后的岩浆 之中。辉石的结构及岩相学特征暗示,安山岩在喷发前经历了岩浆混合及地壳物质的混染,混合过程主要发生于地壳浅部 岩浆房的边界层及粥状层内,且这种混合过程可能是诱发火山喷发的重要机制之一。  相似文献   

7.
High nitrogen (N) loading rates received by coastal bays can have deleterious effects on aquatic ecosystems. Salt marshes can intercept land-based N through seasonal plant uptake, denitrification, and burial. Salt marshes fringing Delaware’s Inland Bays are characterized by different plant species occurring in close proximity. To evaluate N pool retention and loss for the dominant plant species, we measured seasonal N concentration and pool size, N resorption efficiency, loss during decomposition, and soil N. Seasonal variation in N pools and fluxes differed among species. Seasonal differences in the total N pools of the herbaceous species were largely influenced by belowground fine root and dead macro-organic matter fluxes. N production rate estimates ranged from 18 g N m−2 year−1 aboveground for the high marsh shrub to 40.8 g N m−2 year−1 above- and belowground for the high marsh rush illustrating the importance of incorporating species-specific dynamics into ecosystem N budgets.  相似文献   

8.
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20–25 km-thick, 125.3?±?1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3?±?1.2 Ma old, pre-MDC lattice dykes and 117.4?±?3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9–14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only?~?2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740–640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1?±?1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of “antecrysts”, but it is clear that the WFO solidified before the MDC was emplaced, and these older “igneous” grains are inherited. The bimodal age range of inherited igneous grains, dominated by ~?125 Ma and 350–320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by ~?124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (<?750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.  相似文献   

9.
Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e., how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? This is the first study to measure both above- and belowground production in four wetland types that span an entire coastal gradient from fresh to saline wetlands. We hypothesized that increasing salinity would limit rates of primary production, and saline marshes would have lower rates of above- and belowground production than fresher marshes. However, along the Northern Gulf of Mexico Coast in Louisiana, USA, we found that aboveground production was highest in brackish marshes, compared with fresh, intermediate, and saline marshes, and belowground production was similar among all wetland types along the salinity gradient. Multiple regression analysis indicated that salinity was the only significant predictor of production, and its influence was dependent upon wetland type. We concluded that (1) salinity had a negative effect on production within wetland type, and this relationship was strongest in the fresh marsh (0–2 PSU) and (2) along the overall landscape gradient, production was maintained by mechanisms at the scale of wetland type, which were likely related to plant energetics. Regardless of wetland type, we found that belowground production was significantly greater than aboveground production. Additionally, inter-annual variation, associated with severe drought conditions, was observed exclusively for belowground production, which may be a more sensitive indicator of ecosystem health than aboveground production.  相似文献   

10.
The Takaka Terrane in the South Island of New Zealand containsa well-preserved Cambrian arc system (Devil River Volcanics)that displays a complete assemblage of interbedded low- to high-Karc rocks, back-arc rocks and boninites. Most volcanic rocksare mafic. A coherent dataset was obtained including major elements,trace elements and Sr–Nd–Pb isotope compositionsfrom clinopyroxene and amphibole separates. With time, 207Pb/204Pbin the arc rocks become more unradiogenic and 143Nd/144Nd moreradiogenic, and Th/Yb and La/Yb increase. La/Yb values rangefrom one in the boninites and back-arc rocks to 30 in the high-Karc rocks. Corresponding  相似文献   

11.
Re-examination of the Skaergaard intrusion in the context ofits regional setting, combined with new data from explorationdrilling, has resulted in a revised structural model for theintrusion. It is modelled as an irregular box, c. 11 km fromnorth to south, up to 8 km from east to west, and 3·4–4km from the lower to the upper contact. The walls of the intrusionare inferred to follow pre-existing and penecontemporaneoussteep faults, and the floor and roof seem largely controlledby bedding planes in the host sediments and lavas, similar toregional sills. The suggested shape and volume are in agreementwith published gravimetric modelling. Crystallization alongall margins of the intrusion concentrated the evolving meltin the upper, central part of the intrusion, best visualizedas an ‘onion-skin’ structure inside the box. Thetotal volume is estimated to c. 280 ± 23 km3, of which13·7% are referred to the Upper Border Series (UBS),16·4% to the Marginal Border Series (MBS) and 69·9%to the Layered Series (LS). In the LS, the Lower Zone (LZ) isestimated to constitute 66·8%, the Middle Zone (MZ) 13·5%and the Upper Zone (UZ) 19·7%. The new volume relationshipsprovide a mass balance estimate of the major and trace elementbulk composition of the intrusion. The parental magma to theSkaergaard intrusion is similar to high-Ti East Greenland tholeiiticplateau basalts with Mg number c. 0.45. The intrusion representsthe solidification of contemporary plateau basalt magma trappedand crystallized under closed-system conditions in a crustalreservoir at the developing East Greenland continental margin. KEY WORDS: bulk composition; emplacement; mass proportions; Skaergaard intrusion; structure  相似文献   

12.
13.
Wetlands are important centers of biodiversity. Coastal wetlands are subject to anthropogenic threats that can lead to biodiversity loss and consequent negative effects on nature conservation. We investigated relationships between wetland vegetation and habitat conditions in a coastal Nature Reserve in Northern Italy that has undergone seawater intrusion and eutrophication for several decades. The wetland vegetation in the Nature Reserve consisted of nine communities of hygrophytic and helophytic vegetation and five communities of waterplant vegetation. The hygrophytic and helophytic communities were arranged according to a salinity gradient, from salt-free habitats to strongly saline habitats. The saline habitats had high nutrient levels, due to the influx of nitrate-rich saltwater from an adjacent lagoon. The waterplant communities were all typical of freshwater habitats. Water-table depth and concentration of dissolved nutrients in the water were the main factors structuring waterplant vegetation. The main driver of future changes in the wetland vegetation of the Nature Reserve is the ongoing increase in salinity levels which may enhance expansion of halophilic species and communities, thus outcompeting locally rare freshwater species. If nutrient, especially nitrate, load further increases in the next future, this may exert negative effects on wetland species and communities preferring nutrient-poor habitats.  相似文献   

14.
Laminated sediments in Lake Ohau, Mackenzie Basin, New Zealand, offer a potential high‐resolution climate record for the past 17 kyr. Such records are particularly important due to the relative paucity of detailed palaeoclimate data from the Southern Hemisphere mid‐latitudes. This paper presents outcomes of a study of the sedimentation processes of this temperate lake setting. Hydrometeorological, limnological and sedimentological data were collected over a 14 month period between 2011 and 2013. These data indicate that seasonality in the hydrometeorological system in combination with internal lake dynamics drives a distinct seasonal pattern of sediment dispersal and deposition on a basin‐wide scale. Sedimentary layers that accumulate proximal to the lake inflow at the northern end of the lake form in response to discrete inflow events throughout the year and display an event stratigraphy. In contrast, seasonal change in the lake system controls accumulation of light (winter) and dark (summer) laminations at the distal end of the lake, resulting in the preservation of varves. This study documents the key processes influencing sediment deposition throughout Lake Ohau and provides fundamental data for generating a high‐resolution palaeoclimate record from this temperate lake.  相似文献   

15.
Large benthic foraminifera are major carbonate components in tropical carbonate platforms, important carbonate producers, stratigraphic tools and powerful bioindicators (proxies) of environmental change. The application of large benthic foraminifera in tropical coral reef environments has gained considerable momentum in recent years. These modern ecological assessments are often carried out by micropalaeontologists or ecologists with expertise in the identification of foraminifera. However, large benthic foraminifera have been under-represented in favour of macro reef-builders, for example, corals and calcareous algae. Large benthic foraminifera contribute about 5% to modern reef-scale carbonate sediment production. Their substantial size and abundance are reflected by their symbiotic association with the living algae inside their tests. When the foraminiferal holobiont (the combination between the large benthic foraminifera host and the microalgal photosymbiont) dies, the remaining calcareous test renourishes sediment supply, which maintains and stabilizes shorelines and low-lying islands. Geological records reveal episodes (i.e. late Palaeocene and early Eocene epochs) of prolific carbonate production in warmer oceans than today, and in the absence of corals. This begs for deeper consideration of how large benthic foraminifera will respond under future climatic scenarios of higher atmospheric carbon dioxide (pCO2) and to warmer oceans. In addition, studies highlighting the complex evolutionary associations between large benthic foraminifera hosts and their algal photosymbionts, as well as to associated habitats, suggest the potential for increased tolerance to a wide range of conditions. However, the full range of environments where large benthic foraminifera currently dwell is not well-understood in terms of present and future carbonate production, and impact of stressors. The evidence for acclimatization, at least by a few species of well-studied large benthic foraminifera, under intensifying climate change and within degrading reef ecosystems, is a prelude to future host–symbiont resilience under different climatic regimes and habitats than today. This review also highlights knowledge gaps in current understanding of large benthic foraminifera as prolific calcium carbonate producers across shallow carbonate shelf and slope environments under changing ocean conditions.  相似文献   

16.
Abstract: Exploration drilling at Orakeikorako provides information on the hydrologic and thermal regime of the geothermal system, which is presently as high as 265C. The presence of almandine in Drillhole OK–1, at 1312. 5m drilled depth, is the only known occurrence of hydrothermal garnet in an active geothermal system from New Zealand. The formation temperature of the almandine, is not consistent with measured (bore) temperatures, but does coincide with fluid inclusion data and temperatures inferred from other secondary minerals, which suggest it formed at >240C, and possibly as much as 310C. Almandine is an important mineral geothermometer in active hydrothermal systems, and implications for its occurrence should not be discounted in fossil (mineralised) epithermal-type hydrothermal systems.  相似文献   

17.
Abstract. Granitoids and related rocks of eastern Australia can be classified according to their metallogenic potential using a scheme based on compositional character, degree of compositional evolution, degree of fractionation, and oxidation state. The scheme is based on empirical and theoretical considerations and satisfactorily describes the known distribution of granite‐related mineralisation. The granitoids range from unevolved, mantle compatible compositions to highly evolved and fractionated. They exhibit age‐ and region‐specific variations in silica content, compositional evolution and oxidation state. The most unevolved intrusive igneous rocks comprise those of the Ordovician of the Lachlan Orogen, and the Devonian of the New England Orogen. Strongly fractionated and evolved I‐type granites occur in western Tasmania, the southern New England Orogen, and far north Queensland. Other fractionated suites tend to occur relatively rarely in the Lachlan Orogen and elsewhere. Oxidation states vary markedly. The most consistently oxidised rocks occur in the Ordovician of the central Lachlan Orogen, and the northernmost New England Orogen. The Carboniferous I‐types of the northeastern Lachlan Orogen are consistently more oxidised than other Lachlan Orogen I‐types. Gold‐rich, Cu‐poor systems associated with felsic I‐types in eastern Australia are associated with W‐Mo mineralised suites with gold occurring within a predictable metallogenic zonation. Gold mineralised I‐types comprise weakly to moderately oxidised, high‐K granitoid suites that, at least in the east Australian context, have low K/Rb ratios and show strong fractionation trends. Gold is readily removed from granitic magmas through the early precipitation of sulfides, or to a lesser extent by magnetite. Crystallisation of Fe‐poor, silica‐rich granitic magmas in a relatively narrow oxidation window between the FMQ and NNO buffers may provide conditions where retention of Au in magmas in felsic granitic magmas is optimised.  相似文献   

18.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

19.
20.
Rhoades  D. A.  Dowrick  D. J.  Wilson  C. J. N. 《Natural Hazards》2002,26(2):147-174
This paper is a first step in developing a probabilistic hazard model for tephra fall deposits in New Zealand. The database consists of measurements of tephra thickness and eruptive volumefrom 32 past eruptive events at Taupo Volcano. From these are derivedrelations for the mean and maximum tephra thickness as a function ofevent volume and distance from the vent, and for the area enclosed byan isopach as a function of tephra thickness and volume. Thedirectional effects due to wind do not vary appreciably over thevolcanic region of New Zealand. The main feature of wind velocity is aflow to the east that becomes more consistent at higher altitudes. Thelarger the eruption, the more the location of the deposit of maximumthickness (the centre of deposit) tends to be displaced to the east ofvent. A directional attenuation relation about the centre of deposit isderived from the Taupo data. This, in combination with arelation for the position of the centre of deposit relative to thevent, provides a means of estimating the probability of a giventhickness of tephra fall deposit being exceeded at any distance anddirection from the vent in an eruption of given volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号