首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to investigate the effect of element diffusion on the evolution of helium white dwarfs. To this end, we couple the multicomponent flow equations that describe gravitational settling, chemical and thermal diffusion to an evolutionary code. We compute the evolution of a set of helium white dwarf models with masses ranging from 0.169 to 0.406 M. In particular, several low-mass white dwarfs have been found in binary systems as companion to millisecond pulsars. In these systems, pulsar emission is activated by mass transfer episodes so that, if we place the zero-age point at the end of such mass transfer, then the pulsar and the white dwarf ages should be equal. Interestingly enough, available models of helium white dwarfs neglect element diffusion. Using such models, good agreement has been found between the ages of the components of the PSR J1012+5307 system. However, recent observations of the PSR B1855+09 system cast doubts on the correctness of such models, which predict a white dwarf age twice as long as the spin-down age of the pulsar. In this work, we find that element diffusion induces thermonuclear hydrogen shell flashes for models in the mass interval 0.18≲ M /M ≲ 0.41 . We show, in particular, that the occurrence of these diffusion-induced flashes eventually leads to white dwarf models with hydrogen envelope masses too small to support any further nuclear burning, thus implying much shorter cooling ages than in the case when diffusion is neglected. In particular, excellent agreement is found between the ages of PSR B1855+09 system components, solving the age discrepancy from first principles.  相似文献   

2.
We study the full evolution of low-mass white dwarfs with helium and oxygen cores. We revisit the age dichotomy observed in many white dwarf companions to millisecond pulsar on the basis of white dwarf configurations derived from binary evolution computations. We evolve 11 dwarf sequences for helium cores with final masses of 0.1604, 0.1869, 0.2026, 0.2495, 0.3056, 0.3333, 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . In addition, we compute the evolution of five sequences for oxygen cores with final masses of 0.3515, 0.3844, 0.3986, 0.4160 and  0.4481 M  . A metallicity of   Z = 0.02  is assumed. Gravitational settling, chemical and thermal diffusion are accounted for during the white dwarf regime. Our study reinforces the result that diffusion processes are a key ingredient in explaining the observed age and envelope dichotomy in low-mass helium-core white dwarfs, a conclusion we arrived at earlier on the basis of a simplified treatment for the binary evolution of progenitor stars. We determine the mass threshold where the age dichotomy occurs. For the oxygen white dwarf sequences, we report the occurrence of diffusion-induced, hydrogen-shell flashes, which, as in the case of their helium counterparts, strongly influence the late stages of white dwarf cooling. Finally, we present our results as a set of white dwarf mass–radius relations for helium and oxygen cores.  相似文献   

3.
Short-period double degenerates (DDs) are close white dwarf–white dwarf binary stars which are the result of the evolution of interacting binary stars. We present the first definitive measurements of the mass ratio for two DDs, WD 0136+768 and WD 1204+450, and an improved measurement of the mass ratio for WD 0957−666. We compare the properties of the six known DDs with measured mass ratios to the predictions of various theoretical models. We confirm the result that standard models for the formation of DDs do not predict sufficient DDs with mass ratios close to 1. We also show that the observed difference in cooling ages between white dwarfs in DDs is a useful constraint on the initial mass ratio of the binary. A more careful analysis of the properties of the white dwarf pair WD 1704+481.2 leads us to conclude that the brighter white dwarf is older than its fainter companion. This is the opposite of the usual case for DDs and is caused by the more massive white dwarf being smaller and cooling faster. The mass ratio in the sense (mass of younger star)/(mass of older star) is then  1.43±0.06  rather than the value of  0.70±0.03  given previously.  相似文献   

4.
We present a detailed calculation of the evolution of low-mass (<0.25 M) helium white dwarfs. These white dwarfs (the optical companions to binary millisecond pulsars) are formed via long-term, low-mass binary evolution. After detachment from the Roche lobe, the hot helium cores have a rather thick hydrogen layer with mass between 0.01 and 0.06 M. As a result of mixing between the core and outer envelope, the surface hydrogen content ( X surf) is 0.5–0.35 , depending on the initial value of the heavy element Z and the initial secondary mass. We found that the majority of our computed models experience one or two hydrogen shell flashes. We found that the mass of the helium dwarf in which the hydrogen shell flash occurs depends on the chemical composition. The minimum helium white dwarf mass in which a hydrogen flash takes place is 0.213 M ( Z =0.003), 0.198 M ( Z =0.01), 0.192 M ( Z =0.02) or 0.183 M ( Z =0.03). The duration of the flashes (independent of chemical composition) is between a few ×106 and a few ×107 yr. In several flashes the white dwarf radius will increase so much that it forces the model to fill its Roche lobe again. Our calculations show that the cooling history of the helium white dwarf depends dramatically on the thickness of the hydrogen layer. We show that the transition from a cooling white dwarf with a temporarily stable hydrogen-burning shell to a cooling white dwarf in which almost all residual hydrogen is lost in a few thermal flashes (via Roche lobe overflow) occurs between 0.183 and 0.213 M (depending on the heavy element value).  相似文献   

5.
Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA , XMM–Newton and Chandra X-ray observations spread over 10 yr; and a cumulative 27-yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with     , which is inconsistent in sign and magnitude with magnetic dipole radiation losses, or an additional quadratic term with     , which is consistent with a modest increase in the accretion torques spinning down the white dwarf. Regular monitoring, in the optical, ultraviolet and/or X-rays, is required to track the evolution of the spin period of the white dwarf in AE Aqr.  相似文献   

6.
We present  0.9–2.5 μm  spectroscopy with   R ∼800  and  1.12–1.22 μm  spectroscopy with   R ∼5800  for the M dwarfs Gl 229A and LHS 102A, and for the L dwarf LHS 102B. We also report IZJHKL ' photometry for both components of the LHS 102 system, and L ' photometry for Gl 229A. The data are combined with previously published spectroscopy and photometry to produce flux distributions for each component of the kinematically old disc M/L dwarf binary system LHS 102 and the kinematically young disc M/T dwarf binary system Gliese 229. The data are analysed using synthetic spectra generated by the latest 'AMES-dusty' and 'AMES-cond' models by Allard & Hauschildt. Although the models are not able to reproduce the overall slope of the infrared flux distribution of the L dwarf, most likely because of the treatment of dust in the photosphere, the data for the M dwarfs and the T dwarf are well matched. We find that the Gl 229 system is metal-poor despite having kinematics of the young disc, and that the LHS 102 system has solar metallicity. The observed luminosities and derived temperatures and gravities are consistent with evolutionary model predictions if the Gl 229 system is very young  (age∼30 Myr)  with masses (A,B) of (0.38,≳0.007) M, and the LHS 102 system is older, aged  1–10 Gyr  with masses (A,B) of (0.19,0.07) M.  相似文献   

7.
We report the discovery, in an Extreme Ultraviolet Explorer ( EUVE ) short-wavelength spectrum, of an unresolved hot white dwarf companion to the 5th magnitude B5Vp star HR 2875. This is the first time that a non-interacting white dwarf+B star binary has been discovered: previously, the earliest type of star known with a white dwarf companion was Sirius (A1V). As the white dwarf must have evolved from a main-sequence progenitor with a mass greater than that of a B5V star (≯6.0 M⊙), this places a lower limit on the maximum mass for white dwarf progenitors, with important implications for our knowledge of the initial–final mass relation. Assuming a pure-hydrogen atmospheric composition, we constrain the temperature of the white dwarf to be between 39 000 and 49 000 K. We also argue that this degenerate star is likely to have a mass significantly greater than the mean mass for white dwarf stars (≈0.55 M⊙). Finally, we suggest that other bright B stars (e.g. θ Hya) detected in the extreme ultraviolet surveys of the ROSAT Wide Field Camera and EUVE may also be hiding hot white dwarf companions.  相似文献   

8.
We present medium-resolution VLT/FORS2 spectroscopy of six cataclysmic variables (CVs) discovered by the Sloan Digital Sky Survey (SDSS). We determine orbital periods for  SDSS J023322.61+005059.5 (96.08 ± 0.09 min), SDSS J091127.36+084140.7 (295.74 ± 0.22 min), SDSS J103533.02+055158.3 (82.10 ± 0.09 min)  and SDSS J121607.03+052013.9 (most likely 98.82 ± 0.16 min, but the one-day aliases at 92 and 107 min are also possible) using radial velocities measured from their Hα and Hβ emission lines. Three of the four orbital periods measured here are close to the observed 75–80 min minimum period for CVs, indicating that the properties of the population of these objects discovered by the SDSS are substantially different to those of the CVs found by other means. Additional photometry of SDSS J023322.61+005059.5 reveals a periodicity of approximately 60 min which we interpret as the spin period of the white dwarf, suggesting that this system is an intermediate polar with a low accretion rate. SDSS J103533.02+055158.3 has a period right at the observed minimum value, a spectrum dominated by the cool white dwarf primary star and exhibits deep eclipses, so is an excellent candidate for an accurate determination of the parameters of the system. The spectroscopic orbit of SDSS J121607.03+052013.9 has a velocity amplitude of only  13.8 ± 1.6 km s−1  , implying that this system has an extreme mass ratio. From several physical constraints we find that this object must contain either a high-mass white dwarf or a brown-dwarf-mass secondary component or both.  相似文献   

9.
We report the discovery of the nearby  ( d = 24 pc)  HD 75767 as an eight billion year old quadruple system consisting of a distant M dwarf pair, HD 75767 C–D, in orbit around the known short-period   P = 10.25 d  single-lined binary HD 75767 A–B, the primary of which is a solar-like G star. On the reasonable assumption of synchronous orbital rotation as well as rotational and orbital coplanarity for the inner pair, we get   M B= 0.96 M  for the unseen HD 75767 B, that is, the case of a massive white dwarf. Upon future evolution, mass transfer towards HD 75767 B will render the   M A= 0.96 M  G-type primary, now a turnoff star, to become a helium white dwarf of   M A∼ 0.33 M  . Depending on the mass accretion rate, accretion efficiency and composition of the massive white dwarf, this in turn may result in a collapse of HD 75767 B with the formation of a millisecond pulsar, i.e. the creation of a low-mass binary pulsar (LMBP), or, instead, a Type Ia supernova explosion and the complete disruption of HD 75767 B. Irrespective of which scenario applies, we point to the importance of the distant M dwarfs as the likely agents for the formation of the inner, short-period HD 75767 A–B pair, and hence a path that particularly avoids preceding phases of common envelope evolution.  相似文献   

10.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

11.
We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of systems in the orbital period range 80–86 min. We identify this feature as the elusive 'period minimum spike' predicted by CV population models, which resolves a long-standing discrepancy between compact binary evolution theory and observations. We show that this spike is almost entirely due to the large number of CVs with very low accretion activity identified by SDSS. The optical spectra of these systems are dominated by emission from the white dwarf photosphere, and display little or no spectroscopic signature from the donor stars, suggesting very low mass companion stars. We determine the average absolute magnitude of these low-luminosity CVs at the period minimum to be  〈 Mg 〉= 11.6 ± 0.7  . Comparison of the SDSS CV sample to the CVs found in the Hamburg Quasar Survey and the Palomar Green Survey suggests that the depth of SDSS is the key ingredient resulting in the discovery of a large number of intrinsically faint short-period systems.  相似文献   

12.
The purpose of this work is to explore the evolution of helium-core white dwarf stars in a self-consistent way with the predictions of detailed non-grey model atmospheres and element diffusion. To this end, we consider helium-core white dwarf models with stellar masses of 0.406, 0.360, 0.327, 0.292, 0.242, 0.196 and 0.169 M and follow their evolution from the end of mass-loss episodes, during their pre-white dwarf evolution, down to very low surface luminosities.
We find that when the effective temperature decreases below 4000 K, the emergent spectrum of these stars becomes bluer within time-scales of astrophysical interest. In particular, we analyse the evolution of our models in the colour–colour and in the colour–magnitude diagrams and find that helium-core white dwarfs with masses ranging from ∼0.18 to 0.3 M can reach the turn-off in their colours and become blue again within cooling times much less than 15 Gyr and then remain brighter than M V ≈16.5 . In view of these results, many low-mass helium white dwarfs could have had enough time to evolve to the domain of collision-induced absorption from molecular hydrogen, showing blue colours.  相似文献   

13.
An analysis of X-ray and optical light curves of the magnetic cataclysmic variable (MCV) BY Cam is presented. This system is one of three MCVs in which the spin period of the white dwarf and the binary orbital period differ by ∼1 per cent. As such these 'BY Cam' stars are important objects with which to probe the field structure of the magnetic white dwarf and ultimately the nature of synchronization of AM Her binaries. We confirm asynchronous rotation of the magnetic white dwarf with respect to the binary. We find evidence that the accretion stream accretes directly on to the white dwarf as in AM Her systems, but further, the stream impacts on to different magnetic poles over the course of the beat period. We present evidence that the optical and hard X-ray light curves modulate in phase, but together they are out of phase with the soft X-ray light curve. We confirm the spin down of the white dwarf which is expected to lead to the synchronization of the spin and orbital periods of BY Cam.  相似文献   

14.
The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time-dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to white dwarf formation. In particular, we follow the evolution of a 3-M model from the zero-age main sequence (the adopted metallicity is   Z =0.02)  , all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch.
Emphasis is placed on the evolution of the chemical abundance distribution caused by diffusion processes and the role played by hydrogen burning during the white dwarf evolution. We find that discontinuities in the abundance distribution at the start of the cooling branch are considerably smoothed out by diffusion processes by the time the ZZ Ceti domain is reached. Nuclear burning during the white dwarf stage does not represent a major source of energy, as expected for a progenitor star of initially high metallicity. We also find that thermal diffusion lessens even further the importance of nuclear burning.
Furthermore, the implications of our evolutionary models for the main quantities relevant for adiabatic pulsation analysis are discussed. Interestingly, the shape of the Ledoux term is markedly smoother compared with previous detailed studies of white dwarfs. This is translated into a different behaviour of the Brunt–Väisälä frequency.  相似文献   

15.
We argue that the quiescent value of the viscosity parameter of the accretion disc in WZ Sge may be  αcold∼ 0.01  , in agreement with estimates of αcold for other dwarf novae. Assuming the white dwarf in WZ Sge to be magnetic, we show that, in quiescence, material close to the white dwarf can be propelled to larger radii, depleting the inner accretion disc. The propeller therefore has the effect of stabilizing the inner disc and allowing the outer disc to accumulate mass. The outbursts of WZ Sge are then regulated by the (magnetically determined) evolution of the surface density of the outer disc at a radius close to the tidal limit. Numerical models confirm that the recurrence time can be significantly extended in this way. The outbursts are expected to be superoutbursts since the outer disc radius is forced to exceed the tidal (3:1 resonance) radius. The large, quiescent disc is expected to be massive, and to be able to supply the observed mass accretion rate during outburst. We predict that the long-term spin evolution of the white dwarf spin will involve a long cycle of spin-up and spin-down phases.  相似文献   

16.
The ROSAT Wide Field Camera (WFC) survey of the extreme ultraviolet (EUV) has provided us with evidence for the existence of a previously unidentified sample of hot white dwarfs in unresolved, detached binary systems. These stars are invisible at optical wavelengths due to the close proximity of their much more luminous companions (spectral type K or earlier). However, for companions of spectral type ∼A5 or later the white dwarfs are easily visible at far-ultraviolet wavelengths, and can be identified in spectra taken by IUE . 16 such systems have been discovered in this way through ROSAT EUVE IUE observations, including four identified by us in Paper I. In the present paper we report the results of our continuing search during the final year of IUE operations. One new system, RE J0500−364 (DA+F6/7V), has been identified. This star appears to lie at a distance of ∼500−1000 pc, making it one of the most distant white dwarfs, if not the most distant, to be detected in the EUV surveys. The very low line-of-sight neutral hydrogen volume density to this object could place a lower limit on the length of the β CMa interstellar tunnel of diffuse gas, which stretches away from the Local Bubble in a similar direction to RE J0500−364. In this paper we also analyse a number of the stars observed where no white dwarf companion was found. Some of these objects show evidence for chromospheric and coronal activity. Finally, we present an analysis of the previously known WD+active F6V binary HD 27483 (Bo¨hm-Vitense 1993), and show that, at T  ≈ 22 000 K, the white dwarf may be contributing significantly to the observed EUV flux. If so, it is one of the coolest such stars to be detected in the EUV surveys.  相似文献   

17.
AM Her variables – synchronized magnetic cataclysmic variables (CVs) – exhibit a different period distribution from other CVs across the period gap. We show that non-AM Her systems may infiltrate the longer-period end of the period gap if they are metal-deficient, but that the position and width of the gap in orbital period are otherwise insensitive to other binary parameters (except for the normalization of the braking rate). In AM Her binaries, magnetic braking is reduced as the wind from the secondary star may be trapped within the magnetosphere of the white dwarf primary. This reduced braking fills the period gap from its short-period end as the dipole magnetic moment of the white dwarf increases. The consistency of these models with the observed distribution of CVs, of both AM Her and non-AM Her type, provides compelling evidence supporting magnetic braking as the agent of angular momentum loss among long-period CVs, and its disruption as the explanation of the  2–3 h  period gap among non-magnetic CVs.  相似文献   

18.
19.
WD 1704+481 is a visual binary in which both components are white dwarfs. We present spectra of the H α line of both stars which show that one component (WD 1704+481.2=Sanduleak B=GR 577) is a close binary with two white dwarf components. Thus, WD 1704+481 is the first known triple degenerate star. From radial velocity measurements of the close binary we find an orbital period of 0.1448 d, a mass ratio, q M bright M faint, of 0.70±0.03 and a difference in the gravitational redshifts of 11.5±2.3 km s−1. The masses of the close pair of white dwarfs predicted by the mass ratio and gravitational redshift difference combined with theoretical cooling curves are 0.39±0.05 and 0.56±0.07 M. WD 1704+481 is therefore also likely to be the first example of a double degenerate in which the less massive white dwarf is composed of helium and the other white dwarf is composed of carbon and oxygen.  相似文献   

20.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号