共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Volcanology and Geothermal Research》2006,157(4):294-310
Lava flows of the Mangawhero Formation (ca. 15–60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10–20 cm thick) have formed on the sides of large, rectangular, primary (0.5–3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (∼ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351–354]. 相似文献
2.
3.
Shane J. Cronin Vincent E. Neall Robert B. Stewart Alan S. Palmer 《Journal of Volcanology and Geothermal Research》1996,72(3-4)
A multi-parameter approach was used to correlate andesitic tephras in a complex tephra sequence ranging in age from ca. 23 to ca. 75 ka on the eastern ring plain of Ruapehu volcano, North Island. Field properties, combined with ferromagnesian mineral assemblages and mineral compositions, were required to map and correlate this sequence. Three tephra units could be identified based on their unique physical appearance, but other tephras could not be correlated on this basis alone. Hornblende and olivine proved to be valuable marker minerals enabling further distinction of two of the marker units recognised by field properties, as well as defining two further marker tephras. Unweathered titanomagnetite crystals, present in all of the tephras, were subjected to major-element analysis by electron microprobe. Canonical discriminant function analysis (DFA) of these analyses enabled the grouping and discrimination of tephra units, further aiding the identification of defined marker units, as well as defining new marker units. The titanomagnetite chemistry showed a strong relationship to the ferromagnesian mineralogy, showing that the ferromagnesian phenocrysts formed from the same melt or under the same melt conditions prior to eruption of each tephra. Canonical DFA was also applied to hornblende and olivine mineral analyses to identify further marker beds and to confirm identifications of previously defined units. This statistical analysis was found to be invaluable in reducing the large amount of compositional data from this study into a useable form for andesitic tephra correlation and mapping. 相似文献
4.
The Whangaehu fan is the youngest sedimentary component on the eastern ring plain surrounding Ruapehu volcano. Fan history comprises constructional (830–200 years bp) and dissectional (<200 years bp) phases. The constructional phase includes four aggradational periods associated with both syneruptive and inter-eruptive behavior. All four aggradational periods began when deposition by large lahars changed flow conditions on the fan from channelized to unchannelized. Subsequent behavior was a function of the rate of sediment influx to the fan. The rate of sediment influx, in turn, was controlled by frequency and magnitude of volcanic eruptions, short-term climate change, and the amount of sediment stored on the volcano flanks. Fanwide aggradation occurred when rates of sediment influx and deposition on the fan were high enough to maintaìn unchannelized flow conditions on the fan surface. Maintenance of an undissected surface required sedimentation from frequent and large lahars that prevented major dissection between events. These conditions were best met during major eruptive episodes when high frequency and magnitude eruptions blanketed the volcano flanks with tephra and rates of lahar initiation were high. During major eruptive episodes, volcanism is the primary control on sedimentation. Climatic variations do not influence sediment accumulation. Local aggradation occurred when lahars were too small to maintain unchannelized flow across the entire fan. In this case, only the major channel system received much sediment following the deposition from the initial lahar. This localized aggradation occurred if (1) the sediment reservoir on the flank was large enough for floods to bulk into debris flows and (2) sedimentation events were frequent enough to maintain sediment supply to only some parts of the fan. These conditions were met during both minor eruptive and inter-eruptive episodes. In both cases, a large sediment reservoir remained on the volcano flanks from previous major eruptive intervals. Periods of increased storm activity produced floods that bulked to relatively small debris flows. When the sediment reservoir was depleted, the fan entered the present dissectional phase. Syneruptive and noneruptive lahars are mostly channelized and sediment bypasses the fan. Fan deposits are rapidly reworked. This is the present case at Ruapehu, even though the volcano is in a minor eruptive episode and the climate favors generation of intense storm floods. 相似文献
5.
6.
The steep flanks of composite volcanoes are prone to collapse, producing debris avalanches that completely reshape the landscape. This study describes new insights into the runout of large debris avalanches enhanced by topography, using the example of six debris avalanche deposits from Mount Ruapehu, New Zealand. Individual large flank collapses (>1 km3) produced all of these units, with four not previously recognised. Five major valleys within the highly dissected landscape surrounding Mount Ruapehu channelled the debris avalanches into deep gorges (≥15 m) and resulted in extremely long debris avalanche runouts of up to 80 km from source. Classical sedimentary features of debris avalanche deposits preserved in these units include the following: very poor sorting with a clay-sand matrix hosting large subrounded boulders up to 5 m in diameter, jigsaw-fractured clasts, deformed clasts and numerous rip-up clasts of late-Pliocene marine sediments. The unusually long runouts led to unique features in distal deposits, including a pervasive and consolidated interclast matrix, and common rip-up clasts of Tertiary mudstone, as well as fluvial gravels and boulders. The great travel distances can be explained by the debris avalanches entering deep confined channels (≥15 m), where friction was minimised by a reduced basal contact area along with loading of water-saturated substrates which formed a basal lubrication zone for the overlying flowing mass. Extremely long-runout debris avalanches are most likely to occur in settings where initially partly saturated collapsing masses move down deep valleys and become thoroughly liquified at their base. This happens when pore water is available within the base of the flowing mass or in the sediments immediately below it. Based on their H/L ratio, confined volcanic debris avalanches are two to three times longer than unconfined, spreading flows of similar volume. The hybrid qualities of the deposits, which have some similarities to those of debris flows, are important to recognise when evaluating mass flow hazards at stratovolcanoes. 相似文献
7.
Ruapehu is a very active andesitic composite volcano which has erupted five times in the past 10 years. Historical events have included phreatomagmatic eruptions through a hot crater lake and two dome-building episodes. Ski-field facilities, road and rail bridges, alpine huts and portions of a major hydroelectrical power scheme have been damaged or destroyed by these eruptions. Destruction of a rail bridge by a lahar in 1953 caused the loss of 151 lives. Other potential hazards, with Holocene analogues, include Strombolian and sub-Plinian explosive eruptions, lava extrusion from summit or flank vents and collapse of portions of the volcano. The greatest hazards would result from renewed phreatomagmatic activity in Crater Lake or collapse of its weak southeastern wall. Three types of hazard zones can be defined for the phreatomagmatic events: inner zones of extreme risk from ballistic blocks and surges, outer zones of disruption to services from fall deposits and zones of risk from lahars, which consist of tongues down major river valleys. Ruapehu is prone to destructive lahars because of the presence of 107 m3 of hot acid water in Crater Lake and because of the surrounding summit glaciers and ice fields. The greatest risks at Ruapehu are to thousands of skiers on the ski field which crosses a northern lahar path. Three early warning schemes have been established to deal with the lahar problems. Collapse of the southeastern confining wall would release much of the lake into an eastern lahar path causing widespread damage. This is a long-term risk which could only be mitigated by drainage of the lake. 相似文献
8.
Ruapehu composite volcano is a dynamic volcanic-sedimentary system, characterised by high accumulation rates and by rapid lateral and vertical change in facies. Four major cone-building episodes have occurred over 250 Ka, from a variety of summit, flank and satellite vents. Eruptive styles include subplinian, strombolian, phreatomagmatic, vulcanian and dome-related explosive eruptions, and extrusion of lava flows and domes. The volcano can be divided into two parts: a composite cone of volume 110 km3, surrounded by an equally voluminous ring plain. Complementary portions of Ruapehu's history are preserved in cone-forming and ring plain environments. Cone-forming sequences are dominated by sheet- and autobrecciated-lava flows, which seldom reach the ring plain. The ring plain is built predominantly from the products of explosive volcanism, both the distal primary pyroclastic deposits and the reworked material eroded from the cone. Much of the material entering the ring plain is transported by lahars either generated directly by eruptions or triggered by the high intensity rain storms which characterise the region. Ring plain detritus is reworked rapidly by concentrated and hyperconcentrated streams in pulses of rapid aggradation immediately following eruptions and more gradually in the longer intervals between eruptions. 相似文献
9.
Susan L. Donoghue Alan S. Palmer Elizabeth McClelland Kate Hobson Robert B. Stewart Vincent E. Neall Jèrôme Lecointre Richard Price 《Bulletin of Volcanology》1999,61(4):223-240
The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this
volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone,
where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped
into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic
flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define
as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history
and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year
period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered
by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring
plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation
of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal
welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously
considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important
new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre.
Received: 5 July 1998 / Accepted: 12 March 1999 相似文献
10.
11.
Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand 总被引:1,自引:0,他引:1
Shane J. Cronin V. E. Neall J. A. Lecointre M. J. Hedley P. Loganathan 《Journal of Volcanology and Geothermal Research》2003,121(3-4):271-291
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis. 相似文献
12.
P. M. Black 《Bulletin of Volcanology》1970,34(1):158-167
White Island is a complex of two overlapping cones constructed of lava flows, agglomerates and unconsolidated and unsorted ash and tuff beds. Remnants of a welded-tuff flow have been found on the north-east flank of the volcano. Since the extrusion of the youngest lava flow the young cone has been breached to the south-east and deeply eroded. White Island lavas are porphyritic augite-hypersthene-labradorite andesites. One young lava flow is unusually rich in Na2O and contains groundmass sodian ferroaugite instead of the normal augite and hypersthene. The unusual groundmass features of this andesite are believed to be the result of contamination. Volcanic, plutonic and gneissic xenoliths have been found in the White Island lavas. Three new analyses of White Island andesites are given together with an electron microprobe analysis of a groundmass glass from one of the andesites. The White Island andesites are believed to have formed from the hybridisation of a primary mantle-derived andesitic magma with crustal material below the base of the Mesozoic New Zealand Geosyncline. 相似文献
13.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber. 相似文献
14.
M. Nakagawa K. Wada T. Thordarson C. P. Wood J. A. Gamble 《Bulletin of Volcanology》1999,61(1-2):15-31
Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic
scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions.
The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger
events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of
magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic
magma by mixing between relatively high (1000–1200 °C)- and low (∼1000 °C)- temperature (T) end members. Oscillatory zoning
in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although
the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst
clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the
four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature
(high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived
from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation
from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system
comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in
the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected
into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions
sequentially tapped these magma pockets.
Received: 1 April 1998 / Accepted: 22 December 1998 相似文献
15.
The eruptions of Mt Ruapehu in the North Island of New Zealand in 1995 and 1996 caused a tephra barrier to be formed across the outlet of Crater Lake. By 2005 seepage from the refilled lake into the barrier raised the possibility of an eventual collapse of the barrier, releasing a catastrophic lahar down the mountain.As part of an extensive monitoring programme of the tephra barrier, direct current (dc) resistivity surveys were carried out on a number of lines along and across it in order to test whether the extent of the seepage could be measured (and monitored) by geophysical means. Two dimensional inversion of measured apparent resistivity data showed that between the initial measurements, made in January 2005, and February 2006, there was a gradual decrease in resistivity above the old outlet from ~ 50–60 Ωm to ~ 30 Ωm. This gave the first indication that lake water was seeping into the barrier. Between October and December 2006 there was a rapid rise in lake level to only 2 m below the top of the barrier, and a further resistivity survey in January 2007 showed that there had been a further decrease in resistivity throughout the entire barrier with values dropping to < 10 Ωm. The extent of this low resistivity indicated that the barrier was now saturated. At this stage lake water was penetrating the barrier and starting to cause erosion on its downstream side. Catastrophic collapse occurred on 18 March 2007, accompanied by a lahar in the Whangaehu river valley.Subsequent forward 3D numerical modelling of the resistivity structure of the barrier has confirmed that the observed changes in measured resistivity were directly related to the progress of seepage of lake water into the barrier. 相似文献
16.
A two-year chemical monitoring program of Ruapehu Crater Lake shows that it has evolved considerably since the volcano's more active eruptive periods in the early 1970s. The present pH (20°C) of 0.6 is about one half unit more acid than the baseline values in the 1970s, whereas S/Cl ratios have increased markedly owing in part to declining HCl inputs into the lake, but also to absolute increases in SO4 levels which now stand at the highest values ever recorded. Increases in K/Mg and Na/Mg ratios over the 20-year period are attributed to hydrothermal reaction processes in the vent which are presently causing dissolution of previously formed alteration phases such as natroalunite. These observations, combined with results of a recent heat budget analysis of the lake, have led to the development of hydrothermal convection model for the upper portion of the vent. Possible vent/lake chemical reaction processes between end member reactants have been modelled with the computer code CHILLER. The results are consistent with the view that variations in lake chemistry, which are initiated by the introduction of fresh magmatic material into the vent, reflect the extent of dissolution reaction progress on the magmatic material and/or its alteration products. The results also provide insights into the role of such vent processes in the formation of high sulfidation-type ore deposits. 相似文献
17.
Volcanic breccias form large parts of composite volcanoes and are commonly viewed as containing pyroclastic fragments emplaced
by pyroclastic processes or redistributed as laharic deposits. Field study of cone-forming breccias of the andesitic middle
Pleistocene Te Herenga Formation on Ruapehu volcano, New Zealand, was complemented by paleomagnetic laboratory investigation
permitting estimation of emplacement temperatures of constituent breccia clasts. The observations and data collected suggest
that most breccias are autoclastic deposits. Five breccia types and subordinate, coherent lava-flow cores constitute nine,
unconformity-bounded constructional units. Two types of breccia are gradational with lava-flow cores. Red breccias gradational
with irregularly shaped lava-flow cores were emplaced at temperatures in excess of 580 °C and are interpreted as aa flow
breccias. Clasts in gray breccia gradational with tabular lava-flow cores, and in some places forming down-slope-dipping avalanche
bedding beneath flows, were emplaced at varying temperatures between 200 and 550 °C and are interpreted as forming part of
block lava flows. Three textural types of breccia are found in less intimate association with lava-flow cores. Matrix-poor,
well-sorted breccia can be traced upslope to lava-flow cores encased in autoclastic breccia. Unsorted boulder breccia comprises
constructional units lacking significant exposed lava-flow cores. Clasts in both of these breccia types have paleomagnetic
properties generally similar to those of the gray breccias gradational with lava-flow cores; they indicate reorientation after
acquisition of some, or all, magnetization and ultimate emplacement over a range of temperatures between 100 and 550 °C.
These breccias are interpreted as autoclastic breccias associated with block lava flows. Matrix-poor, well-sorted breccia
formed by disintegration of lava flows on steep slopes and unsorted boulder breccia is interpreted to represent channel-floor
and levee breccias for block lava flows that continued down slope. Less common, matrix-rich, stratified tuff breccias consisting
of angular blocks, minor scoria, and a conspicuously well-sorted ash matrix were generally emplaced at ambient temperature,
although some deposits contain clasts possibly emplaced at temperatures as high as 525 °C. These breccias are interpreted
as debris-flow and sheetwash deposits with a dominant pyroclastic matrix and containing clasts likely of mixed autoclastic
and pyroclastic origin. Pyroclastic deposits have limited preservation potential on the steep, proximal slopes of composite
volcanoes. Likewise, these steep slopes are more likely sites of erosion and transport by channeled or unconfined runoff rather
than depositional sites for reworked volcaniclastic debris. Autoclastic breccias need not be intimately associated with coherent
lava flows in single outcrops, and fine matrix can be of autoclastic rather than pyroclastic origin. In these cases, and likely
many other cases, the alternation of coherent lava flows and fragmental deposits defining composite volcanoes is better described
as interlayered lava-flow cores and cogenetic autoclastic breccias, rather than as interlayered lava flows and pyroclastic
beds. Reworked deposits are probably insignificant components of most proximal cone-forming sequences.
Received: 1 October 1998 / Accepted: 28 December 1998 相似文献
18.
19.
A. W. Hurst 《Bulletin of Volcanology》1980,43(1):121-129
The temperature of the Crater Lake of the active volcano Ruapelm has been recorded by Temperature Telemetry Buoys, to determine if lake temperature is correlated with volcanic activity. These buoys had to be specially designed to cope with the unfavourable environment of Crater Lake. A buoy contains a thermistor to measure the lake temperature, and a radio transmitter to transmit a short signal every few minutes, the interval between signals being a function of temperature. The temperature records obtained from these buoys show that the temperature near the lake surface can vary considerably within a few hours. Some of these variations appear to be caused by disturbances in convective heat transfer occurring in the lake. The occurrence of these short term temperature variations means that there is no simple relation between Crater Lake temperatures and the volcanic activity of Ruapehu. Some rapid increases in temperature followed volcanic earthquakes, but one of the biggest increases in temperature occurred just before a group of earthquakes upder the lake. 相似文献
20.
Hydrophone measurements of acoustic noise levels in the Crater Lake of Mount Ruapehu, New Zealand were made on 18 January 1991 from an inflatable rubber boat on the lake. The greatest sound pressures were recorded in the 1–10 Hz band, with sound levels generally decreasing about 20 dB per decade from 10 Hz to 80 kHz. The low frequency noise did not have an obvious relationship to the tremor observed at a seismic station within 1 km of the lake. The comparatively low levels of middle and high frequency sound meant that at the time of measurement, direct steam input did not make a significant contribution to the heating of Crater Lake. This is consistent with the earlier conclusion that during the last decade a major part of the heat input of Crater Lake has come from lake water that was heated below the lake and recycled back into the lake. 相似文献