首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We compare families of simple periodic orbits of test particles in the Newtonian and relativistic problems of two fixed centers (black holes). The Newtonian problem is integrable, while the relativistic problem is highly non-integrable.The orbits are calculated on the meridian plane through the fixed centersM 1 (atz=+1) andM 2 (atz=–1) for energies smaller than the escape energyE=1. We use prolate spheroidal coordinates (, , =const) and also the variables =cosh and =–cos . The orbits are inside a curve of zero velocity (CZV). The Newtonian orbits are also limited by an ellipse and a hyperbola, or by two eillipses. There are 3 main types of periodic orbits (1) elliptic type (around both centers), (2) hyperbolic-type, and (3) resonant-type.The elliptic type orbits are stable in the Newtonian case and both stable and unstable in the relativistic case. From the stable orbits bifurcate double period orbits both symmetric and asymmetric with respect to thez-axis. There are also higher order bifurcations. The hyperbolic-type orbits are unstable. The Newtonian resonant orbits are defined by the ratiot µ/t =n/m of oscillations along and during one period, and they are all marginally unstable. The corresponding relativistic orbits are stable, or unstable. The main families are figure eight orbits aroundM 1, or aroundM 2 (3/1 orbits); gamma, or inverse gamma orbits (4/2); higher resonant families 5/1,7/1,...,8/2,12/2,...;, more complicated orbits, like 5/3, and bifurcations from the above orbits. Satellite orbits aroundM 1, orM 2, and their bifurcations (e.g. double period) exist in the relativistic case but not in the Newtonian case. The characteristics of the various families are quite different in the Newtonian and the relativistic cases. The sizes of the orbits and their stabilities are also quite different in general. In the Appendix we study the various types of straight line orbits and prove that some subcases introduced by Charlier (1902) are impossible.  相似文献   

2.
Two new families of three-dimensional simple-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families emanate from the vertical-critical orbits (v = 1,c v = 0)of the familiesi andl of plane symmetric simpleperiodic orbits direct around the Sun and the Sun-Jupiter respectively. Further, the numerical technique employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

3.
The general properties of certain differential systems are used to prove the existence of periodic orbits for a particle around an oblate spheroid.In a fixed frame, there are periodic orbits only fori=0 andi near /2. Furthermore, the generating orbits are circles.In a rotating frame, there are three families of orbits: first a family of periodic orbits in the vicinity of the critical inclination; secondly a family of periodic orbits in the equatorial plane with 0<e<1; thirdly a family of periodic orbits for any value of the inclination ife=0.  相似文献   

4.
Families of orbits of a conservative, two degree-of-freedom system are represented by an unsteady velocity field with componentsu(x, y, t) andv(x, y, t). Intrinsic stability properties depend on velocity field divergence and curl, whose dynamical evolution is determined by a matrix Riccati equation. Near equilibrium, divergence-free or irrotational fields are dynamically compatible with the conservative force field. It is shown that a necessary condition for stable periodic orbits is satisfied when the orbitaveraged divergence is zero, which results in bounded normal variations. A sufficient condition for stability is derived from the requirement that tangential variations do not exhibit secular growth.In a steady, divergence-free field, velocity component functionsu(x, y) andv(x, y) may be continuedanalytically from any initial condition, except when velocity is parallel to U or at equilibria. In an unsteady field, the orbit-averaged divergence is zero when the vorticity function is periodic. When such a field exists, initial conditions for stable periodic orbits (i.e., characteristic loci) may be determinedanalytically.  相似文献   

5.
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the vertical-critical orbits ( v = –1,c v ),c v=0) of the basic plane familiesi,g 1,g 2,h,a,m andl. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

6.
We emphasize the sharp distinctions between different one-body gravitational trajectories made by the ratio of time averagesR(t)E kin/E pot.R is calculated as a function of the eccentricity (e) and of the energy (E). Whent, independently ofe andE, R1/2 for closed orbits (this clearly illustrates the fulfillment of the virial theorem in classical mechanics); whereasR1, at any time, for open orbits.  相似文献   

7.
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the vertical-critical orbits ( v = – 1, b v – 0) of the basic plane familiesi, g 1, g2, c andI. Further, the predictor-corrector procedure employed to reveal these families has been described and interesting numerical results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

8.
Families of three-dimensional axisymmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the vertical-critical orbits (v = 1,b v = 0) of the basic plane familiesi andI. Further the predictor-corrector procedure employed to reveal these families has been described and interesting numerical results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections.  相似文献   

9.
We study some simple periodic orbits and their bifurcations in the Hamiltonian . We give the forms of the orbits, the characteristics of the main families, and some existence diagrams and stability diagrams. The existence diagram of the family 1a contains regions that are stable (S), simply unstable (U), doubly unstable (DU) and complex unstable (). In the regionsS andU there are lines of equal rotation numberm/n. Along these lines we have bifurcations of families of periodic orbits of multiplicityn. When these lines reach the boundary of the complex unstable region, they are tangent to it. Inside the region there are linesm/n, along which the orbits 1a, describedn-times, are doubly unstable; however, along these lines there are no bifurcations ofn-ple periodic orbits. The families bifurcating from 1a exist only in certain regions of the parameter space (, ). The limiting lines of these regions join at particular points representing collisions of bifurcations. These collisions of bifurcations produce a nonuniqueness of the various families of periodic orbits. The complicated structure of the various bifurcations can be understood by constructing appropriate stability diagrams.  相似文献   

10.
We show that the procedure employed in the circular restricted problem, of tracing families of three-dimensional periodic orbits from vertical self-resonant orbits belonging to plane families, can also be applied in the elliptic problem. A method of determining series of vertical bifurcation orbits in the planar elliptic restricted problem is described, and one such series consisting of vertical-critical orbits (a v=+1) is given for the entire range (0,1/2) of the mass parameter . The initial segments of the families of three-dimensional orbits which bifurcate from two of the orbits belonging to this series are also given.  相似文献   

11.
Will (1971) has discussed a possible anisotropy in the gravitational constantG. Suppose that the attractive gravitational force between two particles of massesm 1 andm 2 is given by the usual expressionF=–Gm 1 m 2 r/r 3, wherer is the separation vector. Ifc is the velocity of light in vacuo and if 1 r r/r, he expresses the anisotropy byG=G [1+(v·1 r/c)2], whereG is a constant,v is identified practically as the velocity of the Sun around the galaxy, and 1. Will's suggestion is to look for such an effect in the laboratory.The purpose of the present paper is to look for such an effect in the solar system, wherem 1 andm 2 become the masses of the Sun and a planet or of the Earth and the Moon. For simplicity I consider only those planets whose orbits are close to the ecliptic, so that the angle betweenv and the plane of the ecliptic is about 59°.With the above force, the resulting two-body problem is completely solvable. The results are these. If =1, there is an increase in mean motion of 7 parts in 108, a periodic fluctuation in true longitude with period half that of the orbit and amplitude ranging possibly from 0.01 to 0.02, and periodic fluctuations in the radius vector, with period also one half that for the orbit. The amplitudes are: 2.7 km for Mercury, 5.1 km for Venus, 7.0 km for Mars, 18 m for the Moon about the Earth, and 28 cm for a close artificial satellite with inclination 23°. The more conservative estimate <0.0115 would reduce these values by the factor 70.  相似文献   

12.
A procedure of selection of meteoroids from major streams is suggested and applied to the IAU Lund photographic database modified by a check for internal consistency among orbital elements (3411 orbits). Limits for choice of stream members were defined by break points on the plots of the cumulative numberN C vs. the Southworth-HawkinsD discriminant. For the break points were considered the points from which the dependenceN C vs.D changes to a quasi-linear one, and with the increasingD, N C changes only moderately. Except for the Taurids which desire a separate analysis, theN C vs.D diagrams are presented for the following major meteoroid streams: Quadrantids, Lyrids, Aquarids, Capricornids, N and S Aquarids, Perseids, Orionids, Leonids and Geminids. The mean orbits, velocities and radiants of the streams are derived and compared with the osculating orbits of their parent bodies. The limitingD B was found to be a function of the number of the stream membersN CB. Omitting the exceptionally concentrated Geminids, the relation is in the formD B = 0.058 *ln(N CB) – 0.04.  相似文献   

13.
In this paper we extend the computation of four families of vertical critical periodic orbitsb 1v ,b 2v ,c 1v ,c 2v , found in part I (Ichtiaroglouet al., 1980), for >0.5. The planar stability of the periodic orbits is also examined.  相似文献   

14.
A method is described for the numerical determination of families of periodic orbits in the planar restricted problem of three bodies. The families are sought in their representation as curves in a two-dimensional space of parameters. A grid search is applied to the study of the evolution of satellite motion when the mass parameter is varied. Only that part of the space of parameters is investigated for which one of them, the relative energy constant, takes values larger than that corresponding to the inner Lagrangian pointL 2. Critical values of the mass parameter are determined for which new families of simple or double periodic orbits appear inside the closed ovals of zero velocity.  相似文献   

15.
Numerical studies over the entire range of mass-ratios in the circular restricted 3-body problem have revealed the existence of families of three-dimensional halo periodic orbits emanating from the general vicinity of any of the 3 collinear Lagrangian libration points. Following a family towards the nearer primary leads, in 2 different cases, to thin, almost rectilinear, orbits aligned essentially perpendicular to the plane of motion of the primaries. (i) If the nearer primary is much more massive than the further, these thin L3-family halo orbits are analyzed by looking at the in-plane components of the small osculating angular momentum relative to the larger primary and at the small in-plane components of the osculating Laplace eccentricity vector. The analysis is carried either to 1st or 2nd order in these 4 small quantities, and the resulting orbits and their stability are compared with those obtained by a regularized numerical integration. (ii) If the nearer primary is much less massive than the further, the thin L1-family and L2-family halo orbits are analyzed to 1st order in these same 4 small quantities with an independent variable related to the one-dimensional approximate motion. The resulting orbits and their stability are again compared with those obtained by numerical integration.  相似文献   

16.
In this paper we consider orbital element distributions for comets moving on admissible orbits in the Oort cloud and distributions for some functions that depend on the orbital elements. Moreover, we find the probability of an event that an arbitrarily chosen admissible orbit belongs to the set (r) of orbital elements and the distribution of circular velocities in the cloud.  相似文献   

17.
Periodic orbits in the Stormer problem are studied using the symmetry lines of the Poincaré map introduced by De Vogelaere. Many known facts are explained by mean of these lines. The dynamics of four special symmetry lines when the Stormer parameter 1 changes is presented, and we obtain a clear global view of the structure of the simple periodic orbits and their bifurcations, including the asymmetrical ones. New asymmetrical multiple periodic orbits are obtained.  相似文献   

18.
Geometrical dynamics is the study of the geometry of the orbits in configuration space of a dynamical system without reference to the system's motion in time.Generalized coordinates for the circular restricted problem of three bodies are taken as polar coordinatesr, centered at the triangular libration pointL 4. A time-independent nonlinear second order ordinary differential equation forr as a function of is derived. Approximations to periodic solutions are obtained by perturbations and Fourier series.  相似文献   

19.
Three-dimensional periodic motions of three bodies are shown to exist in the infinitesimal neighbourhood of their collinear equilibrium configurations. These configurations and some characteristic quantities of the emanating three-dimensional periodic orbits are given for many values of the two mass parameters, =m 2/(m 1+m 2) andm 3, of the general three-body problem, under the assumption that the straight line containing the bodies at equilibrium rotates with unit angular velocity. The analysis of the small periodic orbits near the equilibrium configurations is carried out to second-order terms in the small quantities describing the deviation from plane motion but the analytical solution obtained for the horizontal components of the state vector is valid to third-order terms in those quantities. The families of three-dimensional periodic orbits emanating from two of the collinear equilibrium configurations are continued numerically to large orbits. These families are found to terminate at large vertical-critical orbits of the familym of retrograde periodic orbits ofm 3 around the primariesm 1 andm 2. The series of these termination orbits, formed when the value ofm 3 varies, are also given. The three-dimensional orbits are computed form 3=0.1.  相似文献   

20.
For a given family of orbits f(x,y) = c * which can be traced by a material point of unit in an inertial frame it is known that all potentials V(x,y) giving rise to this family satisfy a homogeneous, linear in V(x,y), second order partial differential equation (Bozis,1984). The present paper offers an analogous equation in a synodic system Oxy, rotating with angular velocity . The new equation, which relates the synodic potential function (x,y), = –V(x, y) + % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaaaa!3780!\[\tfrac{1}{2}\]2(x 2 + y 2) to the given family f(x,y) = c *, is again of the second order in (x,y) but nonlinear.As an application, some simple compatible pairs of functions (x,y) and f(x, y) are found, for appropriate values of , by adequately determining coefficients both in and f.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号