首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrew T. Young 《Icarus》1984,58(2):197-226
Physical and chemical properties of elemental sulfur are incompatible with the suggestion that the colored flows associated with volcanoes on Io are quenched unstable allotropes of sulfur. Either the volcanic flows are not sulfur, or some mechanism other than quenching is required to produce colored forms of sulfur in them. The properties of sulfur are unsuited to the production and survival of colored unstable allotropes on Io. The color of this object is probably due to some other material, possibly iron compounds.  相似文献   

2.
Io: Geochemistry of sulfur   总被引:1,自引:0,他引:1  
John S. Lewis 《Icarus》1982,50(1):103-114
The evidence from Voyager imaging, Earth-based spectral reflectivity studies, and thermal emission measurements combine to suggest an extremely fresh, volcanically recycled sulfur-rich crust for Io, with very shallow large-scale melting. Two present styles of volcanism are possible, depending on the thickness of local deposits of sulfur: shallow liquid sulfur magma generation with quiescent flooding, and high-temperature volcanism with violent eruption of a sulfur-iron magma driven by SO2. Evolutionary considerations preclude direct derivation of Io's lithosphere from any metal-bearing chondritic source material. Metal-free C3V- or C2M-type parent material of either primary or secondary origin is the most plausible direct antecedent of the present sulfur-rich crust. Sulfates are almost certainly important constituents of the mantle, and can participate in the recycling of reduced, dense sulfide species to prevent total extraction of sulfur into the core.  相似文献   

3.
One of the intrinsic properties of particulate sulfur allotropes is a change in UV-visible reflectivity with temperature change of the material. The surface of Io experiences temperature changes during eclipse which are sufficient to cause a detectable change in the spectral reflectivity of sulfur; thus, if the surface of Io is composed primarily of sulfur allotropes, a change in reflectivity at certain wavelengths should be observable shortly after eclipse reappearance. We observed four eclipse reappearances during July and August of 1983 and saw no posteclipse brightening effects in filter bands selected for sensitivity to color changes in sulfur. Our model of the brightness change for S8 (“yellow” sulfur) implies that this material covers less than 50% of Io's surface. Negative posteclipse brightening observations were also obtained with a filter chosen for the high contrast between SO2 frost and the average albedo of the surface of Io at that wavelength. We conclude that no significant condensation of optically thick SO2 occurred on the surface of Io during these eclipses.  相似文献   

4.
Physics and Chemistry of sulfur lakes on Io   总被引:1,自引:0,他引:1  
A model for a convecting sulfur lake, heated from below by a silicate magma chamber , is constructed and applied to major hot spot regions on Jupiter's satellite Io. We use a two-layer parametrized convection scheme for sulfur and silicates based on a local boundary layer analysis to calculate temperature profiles in the system and the maximum flux which can be extracted from the silicate magma in steady state. The results indicate that the highest-component temperature of some observed hot spots (J. S. Pearl and W. M. Sinton, 1982, In The Satellites of Jupiter (D. Morrison, Ed.), pp. 724–755. Univ. of Arizona Press, Tucson) is consistent with a convecting molten sulfur system, and the total flux from the most energetic spot, Loki Patera, is close to the maximum which can be extracted from molten silicates by convection. Simple hydrodynamic models of evaporative outflow from sulfur lakes indicate that the intermediate-component temperature of hot spots such as Loki can be identified with the evaporative sulfur flux which condenses in the atmosphere and over a wide area surrounding the lake(s). The ratio of warm to hot component fluxes for Loki and other hot spots is consistent with this interpretation, and evaporation sets a strong constraint on the maximum surface temperature for a steady-state lake. The Voyager IRIS continuum spectrum can be fitted by a sulfur lake model in which sulfur vapor condensing on the shore is assumed to radiate as a blackbody. The lifetime of such a lake, in steady state, based on evaporation and silicate cooling time scales is 1–100 years, implying long-term Earth-based observations could detect variations in the Loki thermal output. The model provides a useful interpretive tool for possible variability because it gives predictions for the relative thermal fluxes at different wavelengths. The sodium-sulfur phase diagram is also presented and used to show the evaporated lakes may leave behind a sodium-rich residue which could supply the torus with sodium. Finally, uncertainties in the model are assessed, including the lack of sulfur emission features in the Loki spectrum, and the alternative possibility that the SO2 plume observed at Loki could be supplying the excess thermal flux.  相似文献   

5.
《Icarus》1987,70(2):379-382
Experimental results on the sputtering of sulfur by MeV He ions are presented. It is shown that, for most of an Io surface, supposedly covered by sulfur, sputtering dominates sublimation in removing material. Sputtering cannot, however, be the sole supply of neutral sulfur for the Io torus.  相似文献   

6.
Independent evidence suggests that both sulfur and silicate materials exist on the surface of Io. Spectral data indicate the presence of sulfur compounds, some of which are suggested to be of fumarolic origin. Morphological evidence and inferences of the physical properties of some landforms suggest that silicate volcanism has occurred, which would involve temperatures ≥650°C. Because the liquidus of sulfur is only ~115°C, it is likely that sulfur in close proximity to “hot spots” or to active silicate volcanic areas on Io would be melted and mobilized as flows. The Mauna Loa sulfur flow may serve as an analog for such flows, as it consists of fumarolic sulfur that was melted as a consequence of a basaltic eruption and produced a small flow superimposed on silicate lavas.  相似文献   

7.
The spectral reflectance from 0.38 to 0.75 μm of a column of liquid sulfur has been measured at several temperatures between the melting point (~118°C) and 173°C. Below 160°C the spectral reflectance was observed to vary reversibly as a function of temperature, independent of the previous thermal history of the column. Once the temperature exceeded 160°C, the spectrum would not change given a subsequent decrease in temperature. The spectral reflectance of the liquid-sulfur column at all temperatures was very low (10–19%). Combining this information with Voyager spectrophotometry of Jupiter's satellite Io, it is concluded that liquid sulfur at any temperature on Io's surface would be classified as a “black area” according to the standards used by the Voyager imaging team in their spectrophotometric analysis (L. Soderblom, T. V. Johnson, D. Morrison, E. Danielson, B. L. Smith, J. Veverka, A. Cook, C. Sagan, P. Kupferman, D. Pieri, J. Mosher, C. Avis, J. Gradie, and T. Clancy (1980). Geophys. Res. Lett.7, 963–966).  相似文献   

8.
《Icarus》1987,70(2):348-353
Topographic features on Io tend to subside because their underlying roots are softened and eroded by contact with hot mantle. This can be offset by crustal thickening, due primarily to ongoing volcanism, but observations suggest that this is ≲1 cm year−1 at current topographic highs. Since crustal thinning occurs at ∼50 cm year−1 if the underlying material is a pure magma ocean, we conclude that Io has no global magma ocean. Viscosities in excess of ∼1010 P are implied for Io's interior.  相似文献   

9.
《Icarus》1987,70(1):111-123
Measurements of total yields, temperature dependences, mass spectra, and energy spectra of molecules sputtered from condensed sulfur (S8) at low temperatures by keV ions are reported and results are given for Jovian plasma ion bombardment of Io. A change in the reflectance of the sulfur, which can be removed by annealing, is produced by the most penetrating ions and may be connected with the darker, colder polar regions on Io. The measured sputtering yields are much lower than those estimated earlier for room temperature sulfur films but are comparable to previous measurements of keV ion sputtering of SO2 at low temperatures. The corrected mass spectrum indicates that ≈66% of the total yield corresponds to S2 ejection while only 5 and 16% correspond to S and S3, respectively. Therefore, if ions reach the surface of Io its atmosphere will have a non-negligible sulfur component of primarily S2. The ejection of S and S2 is temperature independent for temperatures characteristic of most of the surface of Io. The energy spectrum for S has an approximate 1/E2 dependence at high ejection energies, whereas S2 and S3 fall off more rapidly. Assuming 50% coverage of both sulfur and SO2 and a thin atmosphere (e.g., nightside and polar region) the direct sputter injection of sulfur atoms and molecules into the Jovian plasma torus and the indirect injection due to coronal processes are estimated. These injection rates for sulfur are compared to those for SO2 showing that injection from sulfur deposits contributes 13% to the total mass injection rate of ∼2–3 × 1029 amu/sec.  相似文献   

10.
In February 2003, March 2003 and January 2004 Pele plume transmission spectra were obtained during Jupiter transit with Hubble's Space Telescope Imaging Spectrograph (STIS), using the 0.1″ wide slit and the G230LB grating. The STIS spectra covered the 2100-3100 Å wavelength regions and extended spatially along Io's limb encompassing the region directly above and northward of the vent of the Pele volcano. The S2 and SO2 absorption signatures evident in these data indicate that the gas signature at Pele was temporally variable, and that an S2 absorption signature was present ∼12° from the Pele vent near 6±5 S and 264±15 W, suggesting the presence of another S2 bearing plume on Io. Contemporaneous with the spectral data, UV and visible-wavelength images of the plume were obtained in reflected sunlight with the Advanced Camera for Surveys (ACS) prior to Jupiter transit. The dust scattering recorded in these data provide an additional qualitative measure of plume activity on Io, indicating that the degree of dust scattering over Pele varied as a function of the date of observation, and that there were several other dust bearing plumes active during the observations. We present constraints on the composition and variability of the gas abundances of the Pele plume as well as the plumes detected by ACS and recorded within the STIS data, as a function of time.  相似文献   

11.
Silicon tetrafluoride (SiF4) is observed in terrestrial volcanic gases and is predicted to be the major F-bearing species in low-temperature volcanic gases on Io [Schaefer, L., Fegley Jr., B., 2005b. Alkali and halogen chemistry in volcanic gases on Io. Icarus 173, 454-468]. SiF4 gas is also a potential indicator of silica-rich crust on Io. We used F/S ratios in terrestrial and extraterrestrial basalts, and gas/lava enrichment factors for F and S measured at terrestrial volcanoes to calculate equilibrium SiF4/SO2 ratios in volcanic gases on Io. We conclude that SiF4 can be produced at levels comparable to the observed NaCl/SO2 gas ratio. We also considered potential loss processes for SiF4 in volcanic plumes and in Io's atmosphere including ion-molecule reactions, electron chemistry, photochemistry, reactions with the major atmospheric constituents, and condensation. Photochemical destruction (tchem ∼266 days) and/or condensation as Na2SiF6 (s) appear to be the major sinks for SiF4. We recommend searching for SiF4 with infrared spectroscopy using its 9.7 μm band as done on Earth.  相似文献   

12.
Conor Laver  Imke de Pater 《Icarus》2009,201(1):172-181
We present ground based observations of Io taken with a high spatial resolution imaging spectrometer on 1 and 2 June 2006. We mapped the 1.98 and 2.12 μm absorptions of SO2 frost, across Io's surface. We analyze these data with surface reflectance modeling using the Hapke method to determine the general frost distribution. This analysis also determined a lower limit of 700 μm on the grain size for the areas of strongest absorption. We incorporate our findings of a predominantly equatorial distribution of SO2 frost, with the maps of Carlson et al. [Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., Davies, A.G., Kamp, L.W., Mosher, J.A., Soderblom, L.A., Leader, F.E., Mehlman, R., Clark, R.N., Fanale, F.P., 1997. Geophys. Res. Lett. 24, 2479-2482], McEwen [McEwen, A.S., 1988. Icarus 73, 385-426] and Douté et al. [Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and The Galileo NIMS Team, 2001. Icarus 149, 107-132] to produce a self consistent explanation of the global distribution of SO2. We propose that the differences between the above maps is attributable, in part, to the different bands that were studied by the investigators.  相似文献   

13.
We examine the effects of Io ejecta on the surface and environment of Europa. We find that the observed sulfur on the trailing side of Europa, when interpreted as a deposit in equilibrium between implanation of, and sputtering by, corotating Io ejecta, implies a slow loss of material from Europa by sputtering. From this we infer that the spectrum of particles sputtered from water ice is soft. The quantity of observed sulfur and its confinement to the trailing hemisphere appear to exclude significant implantation and sputtering by energetic heavy ions. We also conclude that the contribution from Europa to the magnetospheric plasma (even at Europa itself) is negligible compared to the matter ejected from Io.  相似文献   

14.
A.J. Dessler 《Icarus》1980,44(2):291-295
Theoretical arguments have been presented to the effect that both plasma and energy are supplied to the Jovian magnetosphere primarily from internal sources. If we assume that Io is the source of plasma for the Jovian magnetosphere and that outward flow of plasma from the torus is the means of drawing from the kinetic energy of rotation of Jupiter to drive magnetospheric phenomena, we can obtain a new, independent estimate of the rate of mass injection from Io into the Io plasma torus. We explicitly assume the solar wind supplies neither plasma nor energy to the Jovian magnetosphere in significant amounts. The power expended by the Jovian magnetosphere is supplied by torus plasma falling outward through the corotational-centrifugal-potential field. A lower limit to the rate of mass injection into the torus, which on the average must equal the rate of mass loss from the torus, is therefore derivable if we adopt a value for the power expended to drive the various magnetospheric phenomena. This method yields an injection rate of at least 103 kg/sec, a value in agreement with the results obtained by two other independent methods of estimating mass injection rate. If this injection rate from Io and extraction of energy from Jupiter's kinetic energy of rotation has been maintained over geologic time, then approximately 0.1% of Io's mass (principally in the form of sulfur and oxygen) has been lost to the Jovian magnetosphere, and Jupiter's spin rate has been reduced by less than 0.1%.  相似文献   

15.
Jacques Henrard 《Icarus》2005,178(1):144-153
  相似文献   

16.
S.H. Gross  G.V. Ramanathan 《Icarus》1976,29(4):493-507
Observations of Io suggest that it may have an atmosphere in which sodium vapor, ammonia, and nitrogen are important constituents. Several atmospheric models consisting of these gases are treated here. These are tested as a function of total content against the Pioneer 10 observations and for stability against escape. The results suggest that the atmosphere is very tenuous and that the interpretation of the ionosphere detected by Pioneer 10 by a static model may be inconsistent with the sodium cloud observations. It is postulated that ionization may also be escaping and that sodium may be comparable in content in the atmosphere with some molecular constituent such as NH3 or N2. Sodium and this molecular component then dominate the atmosphere. It is also suggested that particle precipitation contributes to heating of the atmosphere and to the production of ionization; furthermore, the difference between day- and nighttime ionospheres and possible trailing and leading side effects may relate to the nature of the particle energy distributions. These distributions may be the result of the peculiar interaction of Io with the Jovian magnetosphere.  相似文献   

17.
Magmatic Differentiation of Io   总被引:1,自引:0,他引:1  
If Io has been volcanically active through much of its history, it must be highly differentiated. We present an initial attempt to quantify the differentiation of the silicate portion of Io. We suggest that, on average, each part of Io has undergone about 400 episodes of partial melting. We employ a widely used thermodynamic model of silicate melts to examine the effect of such repeated differentiation. Despite many caveats, including a grossly oversimplistic model of the differentiation process, uncertainties in the initial composition of the mantle, and the failure to model more than four episodes of partial melting, we are able to make some robust conclusions. Io should have a roughly 50 km thick, low density (2600–2900 kg m−3), alkali-rich, siliceous crust composed primarily of feldspars and nepheline. The crustal magmas should have relatively low melting temperatures (<1100 °C). The bulk of the mantle should be essentially pure forsterite (magnesian olivine). It is possible that the denser iron- and calcium-rich materials are segregated into a lower mantle and thus no longer involved in surface processes. These model predictions are generally consistent with the observations of Io. The enrichment of the crust in alkalis may help to explain the composition of the neutral clouds around Io. The failure to detect silicates at the surface of Io to date might be due in part to the difficulty in detecting Fe-poor minerals such as nepheline, feldspars, and forsterite via near-IR spectroscopy. Many hot spot temperatures are too high for sulfur alone but are in line with silica-rich melts. The mountains on Io could be manifestations of large buoyant plutons. The highest temperature lavas may be the result of melts from the depleted mantle making their way to the surface from great depths.  相似文献   

18.
P.E. Geissler  M.T. McMillan 《Icarus》2008,197(2):505-518
Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.  相似文献   

19.
Two classes of volcanic plumes on Io   总被引:1,自引:0,他引:1  
Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ~1400 km in diameter formed around the Aten Patera caldera (311°W, 48°S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338°W, 45°N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255°W, 18°S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ~0.5 km sec?1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ~1.0 km sec?1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240° to 360°W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ~650°K are associated with the large plumes and temperatures <400°K with the small plumes. The typical eruption duration of the small plumes is at least several years; that of the large plumes appears to be of the order of days to weeks. The two classes therefore differ by more than two orders of magnitude in duration of eruption. Based on uv, visible, and infrared spectra, the small plumes seem to contain and deposit SO2 in their annuli whereas the large plumes apparently do not. Two other plumes that occur at either end of the linear feature Loki may be intermediate or hybrid between the two classes, exhibiting attributes of both. Additionally, Loki occurs in the area of overlap in the regional distributions of the two plume classes. Two distinct volcanic systems involving different volatiles may be responsible for the two classes. We propose that the discrete temperatures associated with the two classes are a direct reflection of sulfur's peculiar variation in viscosity with temperature. Over two temperature ranges (~400 to 430°K and >650°K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone of orange sulfur and a deeper zone of black sulfur. A low-temperature system driven by SO2 heated to 400 to 400°K by the orange sulfur zone seems the best model for the small plumes; a system driven by sulfur heated to >650°K by hot or even molten silicates in the black sulfur zone seems the best explanation for the large plume class. The large Pele-type plumes are apparently concentrated in a region of the satellite in which a thinner sulfur-rich crust overlies the tidally heated silicate lithosphere, so the black sulfur zone may be fairly shallow in this region. The Prometheus-type plumes are possibly confined to the equatorial belt by some process that concentrates SO2 fluid in the equatorial crust.  相似文献   

20.
Sets of ridges of uncertain origin are seen in twenty-nine high-resolution Galileo images, which sample seven locales on Io. These ridges are on the order of a few kilometers in length with a spacing of about a kilometer. Within each locale, the ridges have a consistent orientation, but the orientations vary from place to place. We investigate whether these ridges could be a result of tidal flexing of Io by comparing their orientations with the peak tidal stress orientations at the same locations. We find that ridges grouped near the equator are aligned either north-south or east-west, as are the predicted principal stress orientations there. It is not clear why particular groups run north-south and others east-west. The one set of ridges observed far from the equator (52° S) has an oblique azimuth, as do the tidal stresses at those latitudes. Therefore, all observed ridges have similar orientations to the tidal stress in their region. This correlation is consistent with the hypothesis that tidal flexing of Io plays an important role in ridge formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号