首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have obtained spectra of Pluto on six nights during February 1979 using the Cassegrain Digicon spectrograph on the 2.1-m Struve reflector and the IDS spectrograph on the 2.7-m reflector of McDonald Observatory. These spectra, with nominal resolution of 6–7 Å, have been reduced to relative fluxes. Relative albedos were then calculated using the solar irradiances of Arvesen et al. (1969). The spectra taken in the blue show no indication of the upturn in albedo at λ < 3800 A? previously reported by Fix et al. (1970). The lack of a uv upturn cannot be interpreted in terms of a Rayleigh scattering atmosphere unless the albedo of the underlying surface is known. From the lack of methane absorption at the wavelength of the 6190- or 7270-Å methane bands we derive an upper limit of 1–3 m-am of gaseous CH4. The albedo curve has a constant slope between 3500 and 7300 Å. The only other solar system body which has this feature is an S-type asteroid.  相似文献   

2.
《Icarus》1987,70(3):483-498
Absolute spectrophotometry of Pluto in the wavelength range of 5600 to 10,500 Å was obtained on 4 nights covering lightcurve phases of 0.18, 0.35, 0.49, and 0.98. The four phases included minimum light (0.98) and one near maximum light (0.49). The spectra reveal significant variations in the absorption depths of the methane bands at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 Å. The minimum amount of absorption was found to occur at minimum light. This variation would imply a 30° change in the column abundance of methane within 3 days. A model employing an anisotropic surface distribution of methane frost and a clear layer of CH4 gas was developed to explain the variation in absorption strength with rotational phase. The fit to the overall spectrum requires the presence of a frost with particle sizes on the order of a few millimeters. An upper limit of 5.5 m-am is derived for the one-way column abundance of CH4 gas. An equally good fit to the variation of the 7200-Å band is obtained if the atmosphere is removed from the model entirely.  相似文献   

3.
To search for a possible atmosphere on Pluto and Triton, spectra of these objects as well as comparison stars were obtained with a three-stage Varo image tube for the spectral region from 6800 to 9000 Å. Ratio spectra indicate an absorption feature near 8900 Å, although the steeply diminishing response of the image tube at that wavelength casts some doubt on the reality of this feature. The feature appears more definitive in the spectrum of Pluto and less certain in the spectrum of Triton. The absorption was analyzed using our recently determined band-model parameters for methane. Under the assumption of a pressure higher than 0.01 atm an abundance of 3 m-amagat was determined. For pressures limited by the methane abundance itself, an abundance of 50 m-amagat and a pressure of 10?3 atm was derived (using g = 0.20 g⊕ for both Pluto and Triton). This pressure is close to the pressure that can be expected from the equilibrium vapor pressure of a methane frost. If the absorption at 8900 Å is spurious, our analysis will be applicable as an upper limit for the presence of methane gas on Pluto or Triton.  相似文献   

4.
L. Trafton 《Icarus》1985,63(3):374-405
We report the results of monitoring Saturn's H2 quadrupole and CH4 band absorptions outside of the equatorial zone over one-half of Saturn's year. This interval covers most of the perihelion half of Saturn's elliptical orbit, which happens to be approximately bounded by the equinoxes. Marked long-term changes occur in the CH4 absorption accompanied by weakly opposite changes in the H2 absorption. Around the 1980 equinox, the H2 and CH4 absorptions in the northern hemisphere appear to be discontinuous with those in the southern hemisphere. This discontinuity and the temporal variation of the absorptions are evidence for seasonal changes. The absorption variations can be attributed to a variable haze in Saturn's troposphere, responding to changes in temperature and insolation through the processes of sublimation and freezing. Condensed or frozen CH4 is very unlikely to contribute any haze. The temporal variation of the absorption in the strong CH4 bands at south temperate latitudes is consistent with a theoretically expected phase lag of 60° between the tropopause temperature and the seasonally variable insolation. We model the vertical haze distribution of Saturn's south temperature latitudes during 1971–1977 in terms of a distribution having a particle scale height equal to a fraction of the atmospheric scale height. The results are a CH4/H2 mixing ratio of (4.2 ± 0.4) × 10?3, a haze particle albedo of ω = 0.995 ± 0.003, and a range of variation in the particle to gas scale-height ratio of 0.6 ± 0.2. The haze was lowest near the time of maximum temperature. We also report spatial measurements of the absorption in the 6450 Å NH3 band made annually since the 1980 equinox. A 20 ± 4% increase in the NH3 absorption at south temperate latitudes has occurred since 1973–1976 and the NH3 absorption at high northern latitudes has increased during spring. Increasing insolation, and the resulting net sublimation of NH3 crystals, is probably the cause. Significant long-term changes apparently extend to the deepest visible parts of Saturn's atmosphere. An apparently anomalous ortho-para H2 ratio in 1978 suggests that the southern temperate latitudes experienced an unusual upwelling during that time. This may have signaled a rise in the radiative-convective boundary from deep levels following maximum tropospheric temperature and the associated maximum radiative stability. This would be further evidence that the deep, visible atmosphere is governed by processes such as dynamics and the thermodynamics of phase changes, which have response times much shorter than the radiative time constant.  相似文献   

5.
We present a preliminary analysis of CH4 absorptions near 6800 Å in new high resolution spectra of Uranus. A curve of growth analysis of the data yields a rotational temperature near 100 K and a CH4/H2 ratio that is 1 to 3 times that expected for a solar type composition. The long pathlengths of CH4, apparently demanded by absorptions near 4700 Å, are qualitatively shown to be the result of line formation in a deep, predominantly Rayleigh scattering atmosphere in which continuum absorption is a strong function of wavelength. The analysis of the CH4 also yields a minimum value for the effective pressure of line formation (~ 2 atm). This value is shown to be twice that expected on Uranus if the atmosphere were predominantly H2. It is speculated that large amounts of some otherwise optically inert gas is present in the Uranus atmosphere. N2 is suggested as a possible candidate since there are cosmogonic reasons why Uranus should contain large amounts of N relative to C, He, and H, and also because the pressure-induced pure rotation spectrum of N2 could possibly account for the low brightness temperatures that have recently been observed at 33 and 350 μm. If N2 is present the planet probably possesses a surface at the 10–100 atmosphere level.  相似文献   

6.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

7.
New narrow-band (100 Å) photoelectric slit scan photometry of Uranus has been obtained in the spectral region 6000 to 8500 Å. Coarse radial intensity profiles in seven wavebands are presented. Measurements of the point spread function have been used to partially remove the effects of atmospheric seeing. Restoration of the Uranus image, with a spatial resolution limit ~0″.5 arc, has been achieved by means of analytical Fourier-Bessel inversion. Results of the investigation confirm earlier studies of limb brightening on the Uranus disk. But not all strong CH4 absorption bands are found to exhibit limb brightening. Specifically, the CH4 bands at 8000 and 8500 Å show pronounced apparent limb darkening. Polar brightening may be responsible for the phenomenon. If so, an aerosol haze with a local optical thickness ~0.5 or greater would be required. Visibility of the dense cloud layer located deep in the atmosphere might also cause apparent limb darkening. If so, the maximum permitted [CH4/H2] mixing ratio in the visible atmosphere would correspond to ~3 times the solar value.  相似文献   

8.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

9.
V.G. Teifel 《Icarus》1977,30(1):138-154
Results of photoelectric measurements of the intensity in CH4 5430, 6190, and 7250 Å absorption bands, CH4 absorption lines in the 3ν3 band, and the NH3 6457.1 Å line are examined from the point of view of a model which takes into account the role of multiple scattering inside a homogeneous semi-infinite cloud layer in the formation of absorption components in the Jovian spectrum. Introduced are a number of simple ratios between depths of lines and bands and the parameters which characterize the properties of the cloud layer and the atmosphere above the clouds for occurrence of the Henyey-Greenstein scattering phase function at various degrees of asymmetry in g. The CH4 content inside the cloud layer is determined as an equivalent thickness on the mean free path between scattering events. The latter was found to be equal to AL ? 10 ± 2 m-amagat at g = 0.75 or AL ? 20 ± 3 m-amagat at g = 0.5 along all the above-mentioned CH4 absorption bands. For NH3 it is AL ? 31 ± 4 cm-amagat at g = 0.75 and AL ? 62 ± 8 cm-amagat at g = 0.5.The weakening of the CH4 absorption bands toward the edges of the Jovian disc requires a volume scattering coefficient in the cloud layer of σa ~ 10?6 cm?1. The mean specific abundance of NH3 obtained within the cloud layer does not contradict the calculated abundance of saturated gaseous ammonia.  相似文献   

10.
Spectropolarimetry of Jupiter at resolutions between 22 and 35 Å reveals a strong increase of linear polarization in the 7250-A? CH4 band. This is very probably due to the decreasing contribution toward the band center of the higher orders of scattering, which have a smaller net polarization than the first few orders. The linear polarization is also enhanced in the band at 7900 A? comprising the 7920-A? NH3 and 7600- to 8200-A? CH4 bands. The normalized circular polarization shows a feature at 7250 A? with a dispersion shape. This is most probably produced in a double-scattering process involving either a solid or liquid aerosol with an absorption at 7250 A?. Methane aerosols, the obvious candidates from a spectroscopic point of view, are, however, forbidden if current estimates of the Jovian atmospheric temperature are correct.  相似文献   

11.
Observations with a new near infrared imaging spectrometer with ~15 Å resolution are presented. Twelve spectral images of Saturn in the vicinity of the 8900 Å CH4 absorption complex were obtained and their interpretation discussed. Spectral images of Jupiter were also obtained and several of these at widely separated wavelengths were subjected to a Minnaert analysis.  相似文献   

12.
A spectrum of Triton between 6000 and 9000 Å was recorded in June 1980 at the ESO 1.52-m telescope in La Silla. From these data, an upper limit of 3.5 m-am is derived for the CH4 gaseous abundance on Triton.  相似文献   

13.
Kenneth Fox 《Icarus》1975,24(4):454-459
The basis for “quasipolar” absorption (QPA) by CH4 is the existence of a small electric dipole moment in its ground state. The integrated intensity αQPA at a temperature of 90K is calculated to be between 4.8 × 10?5 and 1.9 × 10?2 cm?2 atm?1. With an assumed mean pressure of 0.1 atm and a relative abundance of [CH4][H2] = 1, it is estimated that the ratio of quasipolar to pressure-induced absorption (PIA) is 0.05 ? αQPA/αPIA ? 18 for the spectral range from 0 to 300 cm?1. This result suggests that quasipolar absorption may contribute to a weak, CH4-induced greenhouse in the atmosphere of Titan.  相似文献   

14.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

15.
Robert A. West 《Icarus》1983,53(2):301-309
Spatially resolved measurements of Saturn's reflectivity in the 6190-, 7250-, and 8996-Å methane bands are analyzed to determine cloud vertical structures in the Equatorial Zone, South Equatorial Belt, and North and South Temperate Regions near latitudes ±30°. Radiative transfer models are computed for a simple two-parameter structure. The parameters are A0, the methane column abundance in an aerosol-free layer at the top of the atmosphere, and A1, the specific abundance of methane in a semi-infinite homogeneous gas and cloud mixture deep in the atmosphere. For the Equatorial Zone, a model with A0 = 37 ± 3 m-am and A1 = 26 ± 2 m-am fits all three bands. For the North Temperate Region, a model with A0 = 39 m-am and A1 = 47 m-am comes close to fitting all three bands. For the South Equatorial Belt and South Temperate Region, a single A0 and A1 do not fit all three bands. The structure for the South Equatorial Belt resembles that for the North Temperate Region. The level where unit cloud optical depth occurs in the South Temperate Region is deeper than the corresponding level at other latitudes. Some suggestions are proposed to explain differences between model parameters derived using different absorption bands.  相似文献   

16.
L. Trafton  D.A. Ramsay 《Icarus》1980,41(3):423-429
Observations of Uranus during the 1975, 1976, and 1978 apparitions reveal a weak absorption at the wavelength of the R5(1) line of HD with equivalent width 1.0 ± 0.4 mA?. The DH ratio in Uranus' atmosphere implied by this line and other published spectra is (4.8 ± 1.5) × 10?5, and may not be significantly different from that in the atmospheres of Jupiter and Saturn. In addition, the spectra exhibit two weak absorption at 6044.76 ± 0.02 and 6045.54 ± 0.02 A? which we were unable to identify. No trace of absorption is visible near these wavelengths or near the HD wavelength in a laboratory spectrum of 4.92 km-am CH4 which we obtained in an attempt to identify these absorption features and to verify that the HD feature does not arise from CH4.  相似文献   

17.
Paul G. Steffes 《Icarus》1985,64(3):576-585
Microwave absorption observed in the 35- to 48-km-altitude region of the Venus atmosphere has been attributed to the presence of gaseous sulfuric acid (H2SO4) in that region. This has motivated the laboratory measurement of the microwave absorption at 13.4- and 3.6-cm wavelengths from gaseous H2SO4 in a CO2 atmosphere under simulated conditions for that region. As part of the same experiments, upper limits on the saturation vapor pressure of gaseous H2SO4 have also been determined. The measurements for microwave absorption have been made in the 1- to 6-atm pressure range, with temperatures in the 500 to 575°K range. Using a theoretically derived temperature dependence, the best-fit expression for absorption from gaseous H2SO4 in a CO2 atmosphere at the 13.4-cm wavelength is 9.0 × 109 q(P)12T?3 (dB km?1), where q is the H2SO4 number mixing ratio, P is the pressure in atmospheres, and T is the temperature in degrees Kelvins. The best-fit expression for absorption at the 3.6-cm wavelength is 4.52 × 1010q(P)0.85T?3 (dB km?1). The inferred H2SO4 vapor pressure above liquid H2SO4 corresponds to ln p = 8.84 ? 7220/t where p is the H2SO4 vapor pressure (in atm) and T is the temperature in degrees Kelvins. These results suggest that abundances of gaseous H2SO4 on the order of 15 to 30 ppm could account for the microwave absorption observed by radio occultation experiments at 13.3- and 3.6-cm wavelengths. They also suggest that such abundances would correspond to saturation vapor pressure existing at or above the 46- to 48-km range, which correlates with the observed cloud base. It is suggested that future measurements of absorption in the 1- to 3-cm wavelength range will provide additional tools for monitoring variations in H2SO4 abundance via radio occultation and radio astronomical observations.  相似文献   

18.
Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390–6055 and 20 Å in the interval 6055–7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio of 1 × 10?2 < ?CH4 < 1 × 10?1 is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.  相似文献   

19.
A model of the atmospheric structure of Uranus is presented which differs from previous types of models in two important respects: (1) The CH4/H2 ratio is sufficiently large that CH4 is saturated to large depths in the Uranian atmosphere. (2) The internal energy flux is small compared with that due to solar heating. Because of the small internal flux, the thermal flux decreases rapidly with depth and the atmosphere is radiative to large optical depths. A CH4 droplet cloud forms where the atmosphere finally becomes convective due to the internal flux. The model is shown to be in reasonable agreement with published observations of the H2 quadrupole 3-0 and 4-0 bands, the visible (4000–6000 Å) CH4 bands, and the infrared emission spectrum.  相似文献   

20.
The spectrum of Titan from 4800 to 11 000 Å has many CH4 absorption bands which cover a range of intensities of several orders of magnitude. Yet even the strongest of these bands in Titan's spectrum has considerable residual central intensity. Some investigators have concluded that these strong CH4 bands must be highly saturated, but recent laboratory measurements of the bands made at room temperature show that curve-of-growth saturation is very small. At the presumed low pressures and temperatures in Titan's atmosphere, we show that saturation is very dependent on the band model parameters. However, in either a simple reflecting layer model or in a homogeneous scattering model saturation cannot be the principal cause of the filling in of these strong CH4 bands if our best estimates of the band model parameters are correct. We find that an inhomogeneous scattering model atmosphere with fine “Axel dust” above most ot the CH4 gas is needed to fill in the band centers. The calculated spectrum of one particular model of this class is compared to observations of Titan. Our essential conclusion is that Titan does have most of its scattering particles above most of the CH4 gas which has an abundance of at least 2 km-am. This large abundance of CH4 is necessary to produce the 6420-Å feature recently discovered in Titan's spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号