首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
UBV pinhole scans of the Saturn disk have been made with a photoelectric area-scanning photometer. Limb profiles, spaced parallel to the equator, were obtained over the entire southern hemisphere of the planet. Saturn was found to exhibit strong limb brightening in the ultraviolet, moderate limb brightening at blue wavelengths, and strong limb darkening in the visual region of the spectrum. Latitudinal variations in the disk profiles were found. In general, the degree of limb brightening decreases towards the polar region. Pronounced asymmetry is apparent in the disk profiles in each color. The sunward limb is significantly brighter than the opposite limb. This asymmetry depends on phase angle; approaching zero at opposition, it reaches a maximum near quadrature. Our observations are interpreted using an elementary radiative transfer model. The Saturn atmosphere is approximated by a finite homogeneous layer of isotropically scattering particles overlying a Lambert scattering haze or cloud layer. The reflectivity of the haze or clouds is a strongly dependent function of wavelength. Our best-fitting model consists of a clear H2 layer of column density ~31 km-am above the haze or clouds; the maximum permitted H2 column density is ~46 km-am. The H2 column density above the equatorial region appears to be less than at temperate latitudes. The phase-dependent asymmetry in the disk profiles is a natural consequence of the scattering geometry. Our results are consistent with current knowledge of the Saturn atmosphere.  相似文献   

2.
V.G. Teifel 《Icarus》1983,53(3):389-398
Modeling of the geometric albedo of Uranus in and near prominent methane absorption bands between 0.5 and 0.9 μm indicates that the visible atmosphere probably consists of a thin aerosol haze layer (τscat ? 0.3?0.5; ωH ? 0.95) above an optically thick, semi-infinite Rayleigh scattering atmosphere. A significant depletion of methane gas above the haze layer is indicated. The mixing ratio of methane in the lower atmosphere is consistent with a value of CH4/H2 ? 3 × 10?3, comparable to those derived for Jupiter and Saturn.  相似文献   

3.
Kevin H. Baines 《Icarus》1983,56(3):543-559
High-resolution (0.1-Å) spectra of the 6818.9-Å methane feature obtained for Jupiter, Saturn, and Uranus by K. H. Baines, W. V. Schempp, and W. H. Smith ((1983). Icarus56, 534–542) are modeled using a doubling and adding code after J. H. Hansen ((1969). Astrophys. J.155, 565–573). The feature's rotational quantum number is estimated using the relatively homogeneous atmosphere of Saturn, with only J = 0 and J = 1 fitting the observational constraints. The aerosol content within Saturn's northern temperate region is shown to be substantially less than at the equator, indicating a haze only half as optically thick. Models of Jupiter's atmosphere are consistent with the rotational quantum-number assignment. Synthetic line profiles of the 6818.9-Å feature observed on Uranus reveal that a substantial haze exists at or above the methane condensation region with an optical depth eight times greater than previously reported. Seasonal effects are indicated. The methane column abundance is 5 ± 1 km-am. The mixing ratio of methane to hydrogen within the deep unsaturated region of the planet is 0.045 ± 0.025, based on an H2 column abundance of 240 ± 60 km-am (W. H. Smith, W. Macy, and C. B. Pilcher (1980). Icarus43, 153–160), thus indicating that the methane comprises between one-sixth and one-half of the planet's mass. However, proper reevaluation of H2 quadrupole features accounting for the haze reported here may significantly reduce the relative methane abundance.  相似文献   

4.
New narrow-band (100 Å) photoelectric slit scan photometry of Uranus has been obtained in the spectral region 6000 to 8500 Å. Coarse radial intensity profiles in seven wavebands are presented. Measurements of the point spread function have been used to partially remove the effects of atmospheric seeing. Restoration of the Uranus image, with a spatial resolution limit ~0″.5 arc, has been achieved by means of analytical Fourier-Bessel inversion. Results of the investigation confirm earlier studies of limb brightening on the Uranus disk. But not all strong CH4 absorption bands are found to exhibit limb brightening. Specifically, the CH4 bands at 8000 and 8500 Å show pronounced apparent limb darkening. Polar brightening may be responsible for the phenomenon. If so, an aerosol haze with a local optical thickness ~0.5 or greater would be required. Visibility of the dense cloud layer located deep in the atmosphere might also cause apparent limb darkening. If so, the maximum permitted [CH4/H2] mixing ratio in the visible atmosphere would correspond to ~3 times the solar value.  相似文献   

5.
From 1958 to 1976 the degree and direction of polarization of the light at Saturn's disk center were measured in orange light over 74 nights and at five wavelenghts over 19 nights. Measurements were also recorded at limb, terminator, and pole. In addition, extensive regional polarization measurements were collected over Saturn's disk and several polarization maps were produced. These data were analyzed on the basis Mie scattering theory and of transfer theory in planetary atmospheres. A model of the Saturn upper atmosphere aerosol structure is derived in which the top part of the the main cloud layer is composed of spherical transparent particles of radius 1.4 μm and refractive index 1.44. Above this layer, a fine haze of submicron-sized grains was detected by its production of a component of polarization which is always directed poleward; this upper haze is interpreted as having nonspherical particles which are systematically oriented. This upper haze layer covers approximately the whole planet uniformly but varies in thickness from year to year. The clear gas above the cloud layer has an optical thickness of around 0.1.  相似文献   

6.
M. Podolak  R.E. Danielson 《Icarus》1977,30(3):479-492
The scattering and absorption properties of Axel dust were investigated by means of Mie theory. We find that a flat distribution of particle radii between 0 and 0.1 μm, and an imaginary part of the index of refraction which varies as λ?2.5 produce a good fit to the variation of Titan's geometric albedo with wavelength (λ) provided that τext, the extinction optical depth of Titan's atmosphere at 5000 Å, is about 10. The real part of the complex index is taken to be 2.0. The model assumes that the mixing ratio of Axel dust to gas is uniform above the surface of Titan. The same set of physical properties for Axel dust also produces a good fit to Saturn's albedo if τext = 0.7 at 5000 Å. To match the increase in albedo shortward of 3500 Å, a clear layer (containing about 7 km-am H2) is required above the Axel dust. Such a layer is also required to explain the limb brightening in the ultraviolet. These models can be used to analyze the observed equivalent widths of the visible methane bands. The analysis yields an abundance of the order of 1000 m-am CH4 in Titan's atmosphere. The derived CH4/H2 mixing ratio for Saturn is about 3.5 × 10?3 or an enhancement of about 5 over the solar ratio.  相似文献   

7.
W. Macy 《Icarus》1979,40(2):213-222
Several models for the atmosphere of Uranus are considered. If the H2 abundance is less than 250 km-am and the internal heat source is only a few percent of the total emitted energy then the cloud at the base of the atmosphere may be composed of solid CH4 particles, while if the H2 abundance is greater than 250 km-am or if the internal heat source is near the current upper limit of 35% of the total emitted energy the cloud at the base of the atmosphere may be composed of either solid NH3 or H2S particles.  相似文献   

8.
Michael J. Price 《Icarus》1978,35(1):93-98
Measurements of limb brightening on the Uranus disk within the λ7300 Å CH4 band are interpreted using an elementary inhomogeneous radiative transfer model to describe the atmosphere. A two layer model which consists of a finite, optically thin, region of conservatively scattering particles overlying a semi-infinite clear H2CH4 atmosphere satisfactorily explains the observations. The maximum optical thickness of the upper layer appears to lie in the range 0.1 to 0.2. The CH4/H2 mixing ratio in the lower layer is larger than the corresponding solar value by a factor on the order of three or greater. The results are discussed briefly in terms of current models of the Uranus atmosphere.  相似文献   

9.
W. Macy 《Icarus》1977,32(3):328-347
Analyses of ultraviolet, visible, and near-infrared spectra of Saturn lead to an inhomogeneous atmospheric model, having a clear gas layer which lies above an absorbing particle layer which lies above an ammonia haze layer. The boundary between the clear layer and the absorbing particle layer is at a pressure of 0.2 atm in the equatorial region and 0.3 atm in the temperate region. The boundary between the absorbing particle layer and the haze layer is at the radiative-convective boundary. Observations of ammonia absorption lines indicate that sunlight penetrates the haze to the ammonia sublimation level at a depth of 1.1 atm. Absorbing particles cause the observed decrease in reflectivity from visible to ultraviolet wavelengths. Consideration of the wavelength variation of Mie scattering parameters leads to an upper limit of about 0.2 μm for the particle radii and a particle number density of 103 cm?3. Some possible particle compositions are discussed. Comparison of computed 3-0 and 4-0 band hydrogen quadropole line equivalent widths with observed values leads to a haze layer optical thickness above the ammonia sublimation level of approximately 10. Equivalent widths computed for an equilibrium distribution of states agree better with observed values than those computed for a normal distribution. Methane 3ν3 band manifold equivalent widths are in best agreement with measured equivalent widths for a CH4/H2 abundance ratio of 2 × 10?3, which is 4.5 times the solar C/H ratio.  相似文献   

10.
Data processing and interpretation of the nephelometer measurements made in the Venus atmosphere aboard the Venera 9, 10 and 11 landers in the sunlit hemisphere near the equator are discussed. These results were used to obtain the aerosol distribution and its microphysical properties from 62 km to the surface. The main aerosol content is found in the altitude range between 62 km (where measurements began) and 48 km, the location of the cloud region. Three prominent layers labeled as I (between 62 and 57 km), II (between 57 and 51 km) and III (between 51 and 48 km), each with different particle characteristics are discovered within the clouds. The measured light-scattering patterns can be intrepreted as having been produced by particles with effective radii from 1 to 2 μm depending on height and indices of refractivity from 1.45 in layer I to 1.42 in layer III. These values do not contradict the idea that the droplets are made of sulfuric acid. In layers II and III the particle size distribution is at least bimodal rather than uni-modal. The index of refraction is found to decrease to 1.33 in the lower part of layer II, suggesting a predominant abundance of larger particles of different chemical origin, and chlorine compounds are assumed to be relevant to this effect. In the entire heightrange of the Venera 9–11 craft descents, the clouds are rather rarefied and are characterized by a mean volume scattering coefficient σ ~ 2 × 10?5 cm?1 that corresponds to the mean meteorological range of visibility of about 2 km. The average mass content of condensate is estimated to be equal to 4 × 10?9 g/cm3, and the total optical depth of clouds to τ ~ 35. Near the bottom of layer III clouds are strongly variable. In the subcloud atmosphere a haze was observed between 48 and 32 km; that haze is mainly made of submicron particles, reff ~ 0.1μm. The atmosphere below that is totally transparent but separate (sometimes possibly disappearing) layers may be present up to a height of 8 km above the surface. A model of this region with a very low particle density (N ? 2–3 cm?3) strongly refractive large particles (reff ? 2.5 μm; 1.7 < n < 2.0) provided satisfactory agreement. The optical depth of aerosol in the atmosphere below the subcloud haze does not exceed 2.5.  相似文献   

11.
An eclipse of Titan by Saturn was observed on December 20, 1979, to measure the aerosol content in the atmosphere of Saturn. The measurements were made with the 74-in. telescope of the Helwan Observatory, Egypt, in the bandpass 6300–7300 Å and extend to ~5 magnitudes of eclipse darkening. The faint portion of the lightcurve unambiguously requires the presence of aerosol in the lower stratosphere of Saturn. The aerosol extends to at least 20 km above the tropopause and has a one-way stratospheric vertical optical depth of 0.4?0.02+0.04 at 6700 Å. The results apply to the sunset terminator at a cronographic latitude of 23°S.  相似文献   

12.
Disk scans of Saturn at 10 and 20 μm were obtained when the Saturnicentric solar declination (B′) was ?11°.8. The scans show little change from scans obtained when B′ was ?16°.3, and this could result from the long radiative time constant of the Saturnian atmosphere. The observations at 20 μm, in the H2 continuum, show positively that the temperature inversion at the south pole has a higher temperature than at any other point on the disk. In addition, the 12.1- and 20-μm scans indicate that the temperature of the inversion region is higher at the equator compared to the temperate zone. The data also suggest that enhanced 20-μm emission is correlated with the strength of the ultraviolet absorption.  相似文献   

13.
H.M. Schmid  F. Joos  D. Gisler 《Icarus》2011,212(2):701-713
We present ground-based limb polarization measurements of Jupiter and Saturn consisting of full disk imaging polarimetry for the wavelength 7300 Å and spatially resolved (long-slit) spectropolarimetry covering the wavelength range 5200-9350 Å.For the polar region of Jupiter we find for λ = 6000 Å a very strong radial (perpendicular to the limb) fractional polarization with a seeing corrected maximum of about +11.5% in the South and +10.0% in the North. This indicates that the polarizing haze layer is thicker at the South pole. The polar haze layers extend down to 58° in latitude. The derived polarization values are much higher than reported in previous studies because of the better spatial resolution of our data and an appropriate consideration of the atmospheric seeing. Model calculations demonstrate that the high limb polarization can be explained by strongly polarizing (p ≈ 1.0), high albedo (ω ≈ 0.98) haze particles with a scattering asymmetry parameter of g ≈ 0.6 as expected for aggregate particles of the type described by West and Smith (West, R.A., Smith, P.H. [1991]. Icarus 90, 330-333). The deduced particle parameters are distinctively different when compared to lower latitude regions.The spectropolarimetry of Jupiter shows a decrease in the polar limb polarization towards longer wavelengths and a significantly enhanced polarization in strong methane bands when compared to the adjacent continuum. This is a natural outcome for a highly polarizing haze layer above an atmosphere where multiple scatterings are suppressed in absorption bands. For lower latitudes the fractional polarization is small, negative, and it depends only little on wavelength except for the strong CH4-band at 8870 Å.The South pole of Saturn shows a lower polarization (p ≈ 1.0-1.5%) than the poles of Jupiter. The spectropolarimetric signal for Saturn decrease rapidly with wavelength and shows no significant enhancements in the fractional polarization in the absorption bands. These properties can be explained by a vertically extended stratospheric haze region composed of small particles <100 nm as suggested previously by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2005]. Icarus 179, 195-221).In addition we find in the V- and R-band a previously not observed strong polarization feature (p = 1.5-2.0%) near the equator of Saturn. The origin of this polarization signal is unclear but it could be related to a seasonal effect.Finally we discuss the potential of ground-based limb polarization measurements for the investigation of the scattering particles in the atmospheres of Jupiter and Saturn.  相似文献   

14.
The global distribution of phosphine (PH3) on Jupiter and Saturn is derived using 2.5 cm−1 spectral resolution Cassini/CIRS observations. We extend the preliminary PH3 analyses on the gas giants [Irwin, P.G.J., and 6 colleagues, 2004. Icarus 172, 37-49; Fletcher, L.N., and 9 colleagues, 2007a. Icarus 188, 72-88] by (a) incorporating a wider range of Cassini/CIRS datasets and by considering a broader spectral range; (b) direct incorporation of thermal infrared opacities due to tropospheric aerosols and (c) using a common retrieval algorithm and spectroscopic line database to allow direct comparison between these two gas giants.The results suggest striking similarities between the tropospheric dynamics in the 100-1000 mbar regions of the giant planets: both demonstrate enhanced PH3 at the equator, depletion over neighbouring equatorial belts and mid-latitude belt/zone structures. Saturn's polar PH3 shows depletion within the hot cyclonic polar vortices. Jovian aerosol distributions are consistent with previous independent studies, and on Saturn we demonstrate that CIRS spectra are most consistent with a haze in the 100-400 mbar range with a mean optical depth of 0.1 at 10 μm. Unlike Jupiter, Saturn's tropospheric haze shows a hemispherical asymmetry, being more opaque in the southern summer hemisphere than in the north. Thermal-IR haze opacity is not enhanced at Saturn's equator as it is on Jupiter.Small-scale perturbations to the mean PH3 abundance are discussed both in terms of a model of meridional overturning and parameterisation as eddy mixing. The large-scale structure of the PH3 distributions is likely to be related to changes in the photochemical lifetimes and the shielding due to aerosol opacities. On Saturn, the enhanced summer opacity results in shielding and extended photochemical lifetimes for PH3, permitting elevated PH3 levels over Saturn's summer hemisphere.  相似文献   

15.
H.G. Roe  I. de Pater 《Icarus》2004,169(2):440-461
All previous observations of seasonal change on Titan have been of physical phenomena such as clouds and haze. We present here the first observational evidence of chemical change in Titan's atmosphere. Images taken during 1999-2002 (late southern spring on Titan) with the W.M. Keck I 10-meter telescope at 8-13 μm show a significant accumulation of ethylene (C2H4) in the south polar stratosphere as well as north-south stratospheric temperature variation (colder at poles). Our observations restrict this newly discovered south polar ethylene accumulation to latitudes south of 60° S. The only other observations of the spatial distribution of C2H4 were those of Voyager I, which found a significant north polar accumulation in early northern spring. We see no build-up in the north, although the highest northern latitudes are obstructed from view in the current season. Our observations constrain any unobserved north polar accumulation of C2H4 to north of 50° N latitude. Comparison of the Voyager I results with our new results show seasonal chemical change has occurred in Titan's atmosphere.  相似文献   

16.
One of the key components controlling the chemical composition and climatology of Titan's atmosphere is the removal of reactive atomic hydrogen from the atmosphere. A proposed process of the removal of atomic hydrogen is the heterogeneous reaction with organic aerosol. In this study, we investigate the effect of heterogeneous reactions in Titan's atmospheric chemistry using new measurements of the heterogeneous reaction rate [Sekine, Y., Imanaka, H., Matsui, T., Khare, B.N., Bakes, E.L.O., McKay, C.P., Sugita, S., 2008. Icarus 194, 186-200] in a one-dimensional photochemical model. Our results indicate that 60-75% of the atomic hydrogen in the stratosphere and mesosphere are consumed by the heterogeneous reactions. This result implies that the heterogeneous reactions on the aerosol surface may predominantly remove atomic hydrogen in Titan's stratosphere and mesosphere. The results of our calculation also indicate that a low concentration of atomic hydrogen enhances the concentrations of unsaturated complex organics, such as C4H2 and phenyl radical, by more than two orders in magnitude around 400 km in altitude. Such an increase in unsaturated species may induce efficient haze production in Titan's mesosphere and upper stratosphere. These results imply a positive feedback mechanism in haze production in Titan's atmosphere. The increase in haze production would affect the chemical composition of the atmosphere, which might induce further haze production. Such a positive feedback could tend to dampen the loss and supply cycles of CH4 due to an episodic CH4 release into Titan's atmosphere.  相似文献   

17.
We present an analysis of observations of the auroral/polar regions of Saturn, carried out in 1999, 2004 and 2005, making use of the facility spectrometer, CGS4, on the United Kingdom Infrared Telescope (UKIRT), Mauna Kea, Hawaii. We obtain temperatures of 380(±70) K in 1999 and 420(±70) K in 2004. (The 2005 data has insufficient spectral resolution for a temperature determination to be made.) Our most probable interpretation is that the temperature of Saturn's auroral/polar H+3 layer should be taken as 400(±50) K. This is lower than the value obtained by Miller et al. [Miller, S., and 10 colleagues, 2000. Philos. Trans. R. Soc. 358, 2485-2502], which is shown to be in error. Our analysis reveals clearly that the line emission due to H+3 varies considerably, showing nearly an order of magnitude increase when one compares the data obtained in 1999 with those of 2004. Our conclusion is that this variability is (mainly) due to the changing H+3 column density. By analogy with modelling results obtained for Jupiter, we estimate that the particle (keV electron) precipitation experienced by Saturn must be ∼20 times greater in 2004 than in 1999, to produce this additional ionisation. The H+3 emission increases, but this is insufficient to offset most of the heating due to the extra particle precipitation, indicating that this ion does not act as a “thermostat” on Saturn, in the same way that it does on Jupiter.  相似文献   

18.
Narrow-waveband (100 Å) photoelectric slit-scan photometry of the Neptune disk is reported. Observations were concentrated within the strong CH4 band at λ7300 Å. For comparison, measurements were also made within a continuum waveband at λ6800 Å. Point spread function data were obtained in both colors. Qualitative estimates of the true intensity distribution over the Neptune disk were made. Within the λ6800-Å continuum band, Neptune appears as an essentially uniform disk. Within the λ7300 Å CH4 band, the planet exhibits strong limb brightening. Our results appear to require the presence of an optically thin layer of brightly scattering aerosol particles high in the Neptune atmosphere.  相似文献   

19.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

20.
Stellar occultations observed by the Cassini/UVIS instrument provide unique data that probe the mesosphere and lower thermosphere of Titan at altitudes between 400 and 1400 km. This region is a site of complex photochemistry that forms hydrocarbon and nitrile species, and plays a crucial role in the formation of the organic hazes observed in the stratosphere, but has yet to be adequately characterized. We analyzed publicly available data obtained between flybys Tb in December 2004 and T58 in July 2009, with an emphasis on two stable occultations obtained during flybys T41 and T53. We derived detailed density profiles for CH4, C2H2, C2H4, C4H2, HCN, HC3N and C6H6 between ∼400 and 1200 km and extinction coefficients for aerosols between 400 and 900 km. Our analysis reveals the presence of extinction layers in the occultation data that are associated with large perturbations in the density profiles of the gaseous species and extinction profiles of the aerosols. These relatively stable features vary in appearance with location and change slowly over time. In particular, we identify a sharp extinction layer between 450 and 550 km that coincides with the detached haze layer. In line with recent images obtained by Cassini/ISS, the altitude of this layer changes rapidly around the equinox in 2009. Our results point to unexpected complexity that may have significant consequences for the dynamics and physical processes taking place in the upper atmosphere of Titan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号