首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Astroparticle Physics》2008,29(4):257-281
The results of the measurements of the double-differential production cross-sections of pions, , in p–C and π±–C interactions using the forward spectrometer of the HARP experiment are presented. The incident particles are 12 GeV/c protons and charged pions directed onto a carbon target with a thickness of 5% of a nuclear interaction length. For p–C interactions the analysis is performed using 100,035 reconstructed secondary tracks, while the corresponding numbers of tracks for π-–C and π+–C analyses are 106,534 and 10,122, respectively. Cross-section results are presented in the kinematic range and in the laboratory frame. The measured cross-sections have a direct impact on the precise calculation of atmospheric neutrino fluxes and on the improved reliability of extensive air shower simulations by reducing the uncertainties of hadronic interaction models in the low energy range.  相似文献   

2.
《Astroparticle Physics》2009,31(6):399-406
From direct observations of the longitudinal development of ultra-high energy air showers performed with the Pierre Auger Observatory, upper limits of 3.8%, 2.4%, 3.5% and 11.7% (at 95% c.l.) are obtained on the fraction of cosmic-ray photons above 2, 3, 5 and 10 EeV , respectively. These are the first experimental limits on ultra-high energy photons at energies below 10 EeV. The results complement previous constraints on top–down models from array data and they reduce systematic uncertainties in the interpretation of shower data in terms of primary flux, nuclear composition and proton-air cross-section.  相似文献   

3.
We have studied the escape and energization of several O+ populations and an population at Mars by using a hybrid model. The quasi-neutral hybrid model, HYB-Mars model, included five oxygen ion populations making it possible to distinguish photoions from oxygen ions originating from charge exchange processes and from the ionosphere.We have identified two high-energy ion components and one low-energy ion component of oxygen. They have different spatial and energy distributions near Mars. The two high-energy oxygen ion components, consisting of a high-energy “beam” and a high-energy “halo”, have different origins. (1) The high-energy (>∼100 eV) “beam” of O+ and ions are originating from the ionosphere. These ions form a highly asymmetric spatial distribution of escaping oxygen ions with respect to the direction of the convective electric field in the solar wind. (2) The high-energy (>∼100 eV) “halo” component contains O+ ions which are formed from the oxygen neutral exosphere by extreme ultraviolet radiation (EUV) and by charge exchange processes. These energetic halo ions can be found all around Mars. (3) The low energy O+ and ions (<∼100 eV) form a relatively symmetric spatial distribution around the Mars-Sun line. They originate from the ionosphere and from charge exchange processes between protons and exospheric oxygen atoms.The existence of the low- and the high-energy oxygen components is in agreement with recent in situ plasma measurements made by the ASPERA-3 instrument on the Mars Express mission. The analysis of the escaping oxygen ions suggests that the global energization of escaping planetary ions in the martian tail is controlled by the convective electric field.  相似文献   

4.
《Astroparticle Physics》2008,29(4):243-256
A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8×10-3, above , are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted by the Auger Observatory to calibrate the shower energy is not strongly biased by a contamination from photons.  相似文献   

5.
The MINOS experiment has observed a rise in the underground muon charge ratio rμ=μ+/μ-. This ratio can be related to the atmospheric production ratios of π+/π- and K+/K-. Our analysis indicates that the relevant variable for studying the charge ratio is , rather than . We compare a simple energy dependent parameterization of the rise in the charge ratio with more detailed previously published Monte Carlo simulations and an analytical calculation. We also estimate the size of two previously neglected effects in this context: the charge sign dependency of the dE/dx in rock, and the energy dependence of heavy primaries on the derived K+/K- ratio.  相似文献   

6.
7.
《Astroparticle Physics》2009,32(2):89-99
Atmospheric parameters, such as pressure (P), temperature (T) and density (ρP/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a 10% seasonal modulation and 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.  相似文献   

8.
In November 2005, we observed the moons of Mars using the Arecibo 2380-MHz (13-cm) radar, obtaining a result for the OC radar albedo of Phobos (0.056±0.014) consistent with its previously reported radar albedo and implying an upper bound on its near-surface bulk density of . We detected Deimos by radar for the first time, finding its OC radar albedo to be 0.021±0.006, implying an upper bound on its near-surface density of , consistent with a high-porosity regolith. We briefly discuss reasons for these low radar albedos, Deimos' being possibly the lowest of any Solar System body yet observed by radar.  相似文献   

9.
Recent works have shown that the thermal inertia of km-sized near-Earth asteroids (NEAs) is more than 2 orders of magnitude higher than that of main belt asteroids (MBAs) with sizes (diameters) between 200 and 1000 km. This confirms the idea that large MBAs, over hundreds millions of years, have developed a fine and thick thermally insulating regolith layer, responsible for the low values of their thermal inertia, whereas km-sized asteroids, having collisional lifetimes of only some millions years, have less regolith, and consequently a larger surface thermal inertia.Because it is believed that regolith on asteroids forms as a result of impact processes, a better knowledge of asteroid thermal inertia and its correlation with size, taxonomic type, and density can be used as an important constraint for modeling of impact processes on asteroids. However, our knowledge of asteroids’ thermal inertia values is still based on few data points with NEAs covering the size range 0.1-20 km and MBAs that .Here, we use IRAS infrared measurements to estimate the thermal inertia values of MBAs with diameters and known shapes and spin vector, filling an important size gap between the largest MBAs and the km-sized NEAs. An update to the inverse correlation between thermal inertia and diameter is presented. For some asteroids thermophysical modeling allowed us to discriminate between the two still possible spin vector solutions derived from optical lightcurve inversion. This is important for (720) Bohlinia: our preferred solution was predicted to be the correct one by Vokrouhlický et al. [2003. The vector alignments of asteroid spins by thermal torques. Nature 425, 147-151] just on theoretical grounds.  相似文献   

10.
David Andrew Fisher 《Icarus》2005,179(2):387-397
This paper describes a “simple standard” model of water transport through regolith that includes diffusive migration and phase changes driven by damped seasonal temperature waves. A hitherto unused first-order process is then added, that can produce ice densities much greater than those allowed by the initial dry porosity. Voids are produced in cooling icy regolith when tensile stresses exceed the cracking threshold . These stresses build up through an interaction of thermal contraction and elastic-plastic response. When the cracks open up after tensile failure there is purely thermal void enhancement and subsequent reduction as the regolith warms again. When the cracks are open the porosity is increased and they partially fill with ice crystals. Thus the void reduction on warming cannot go back to the original zero point and the bulk density of ice is increased with each temperature cycle. The cracking and thermal adjustment happen at scales of meters to millimeters. The large cracks can occur in pure ice and/or homogeneous icy material and the smaller cracks are produced by rock cobbles, pebbles, and grains having a much smaller coefficient of thermal expansion than ice. Thus a hierarchy of cracks and voids forms each temperature cycle and augments the ice content. The process can take the upper few meters of a pore-saturated icy soil from 28% by mass ice content to 70% in 10 Ma. This mechanism and the seasonal temperature cycle can plausibly produce massive ice deposits in the upper few meters of Mars' high-latitude regolith by diffusion and also keep the massive-ice regolith effectively porous to water vapor transport. The obliquity cycle can produce tensile stresses nearing 2 MPa down to depth so even deeper cracking could be happening.  相似文献   

11.
The chemical composition of primary cosmic rays with energies from 1015 to 1016.5 eV, so called “knee” region, is examined. We have observed the time structures of air Čerenkov light associated with air showers at Mt. Chacaltaya, Bolivia, since 1995. The distribution of a parameter that characterizes the observed time structures is compared with that calculated with a Monte Carlo technique for various chemical compositions. Then the energy dependence of the average logarithmic mass numbers ln A of the primary cosmic rays is determined. The present result at 1015.3 eV is almost consistent with the result of JACEE (A12) and shows gradual increase in ln A as a function of the primary energy (A24 at 1016 eV). Form the comparison of the observational results with several theoretical models, we conclude that the supernova explosion of massive stars is a plausible candidate for the origin of cosmic rays around the “knee” region.  相似文献   

12.
We have studied the sublimation of ice and water vapor transport through various thicknesses of clay (<63 μm grain size). We experimentally demonstrate that both adsorption and diffusion strongly affect the transport of water, and that the processes of diffusion and adsorption can be separately quantified once the system comes to a steady state. At shallow depths of clay, water vapor transport is determined by diffusion through both the atmosphere and the clay layer, whereas at greater depth the rate of sublimation of the ice is governed only by diffusion through the clay. Using two different models, we determine the diffusion coefficient for water vapor through unconsolidated clay layer to be 1.08±0.04×10−4 and . We also determined the adsorption isotherms for the clay layer, which follow the Langmuir theory at low water vapor pressure (<100 Pa, where a monolayer of water molecules forms on the surface of the clay) and the BET theory at higher pressure (where multiple water layers form). From our analysis of both types of isotherms we determined the adsorption constants to be and c=30±10, respectively, and specific surface areas of 1.10±0.2×105 and , respectively. Finally, we report a theoretical kinetic model for the simultaneous diffusion and adsorption from which we determine adsorption kinetic constants according to the Langmuir theory of and . If the martian regolith possesses diffusive properties similar to those of the unconsolidated montmorillonite soil we investigated here, it would not represent a significant barrier to the sublimation of subsurface ice. However, at the low subsurface temperatures of high latitude (180 K on average), ice could survive from the last glaciation period (about 300 to 400,000 years ago). Higher subsurface temperatures in the equatorial regions would prevent long-timescale survival of ice in the shallow subsurface. In agreement with previous work, we show that adsorption of water by a clay regolith could provide a significant reservoir of subsurface water and it might account for the purported diurnal cycle in the water content of the atmosphere.  相似文献   

13.
14.
Spectral maps of Mimas’ daytime thermal emission show a previously unobserved thermal anomaly on Mimas’ surface. A sharp V-shaped boundary, centered at 0°N and 180°W, separates relatively warm daytime temperatures from a cooler anomalous region occupying low- to mid-latitudes on the leading hemisphere. Subsequent observations show the anomalous region is also warmer than its surroundings at night, indicating high thermal inertia. Thermal inertia in the anomalous region is , compared to < outside the anomaly. Bolometric Bond albedos are similar between the two regions, in the range 0.49-0.70. The mapped portion of the thermally anomalous region coincides in shape and location to a region of high-energy electron deposition from Saturn’s magnetosphere, which also has unusually high near-UV reflectance. It is therefore likely that high-energy electrons, which penetrate Mimas’ surface to the centimeter depths probed by diurnal temperature variations, also alter the surface texture, dramatically increasing its thermal inertia.  相似文献   

15.
New numerical simulations of the formation and evolution of Jupiter are presented. The formation model assumes that first a solid core of several M accretes from the planetesimals in the protoplanetary disk, and then the core captures a massive gaseous envelope from the protoplanetary disk. Earlier studies of the core accretion-gas capture model [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62-85] demonstrated that it was possible for Jupiter to accrete with a solid core of 10-30 M in a total formation time comparable to the observed lifetime of protoplanetary disks. Recent interior models of Jupiter and Saturn that agree with all observational constraints suggest that Jupiter's core mass is 0-11 M and Saturn's is 9-22 M [Saumon, G., Guillot, T., 2004. Astrophys. J. 609, 1170-1180]. We have computed simulations of the growth of Jupiter using various values for the opacity produced by grains in the protoplanet's atmosphere and for the initial planetesimal surface density, σinit,Z, in the protoplanetary disk. We also explore the implications of halting the solid accretion at selected core mass values during the protoplanet's growth. Halting planetesimal accretion at low core mass simulates the presence of a competing embryo, and decreasing the atmospheric opacity due to grains emulates the settling and coagulation of grains within the protoplanet's atmosphere. We examine the effects of adjusting these parameters to determine whether or not gas runaway can occur for small mass cores on a reasonable timescale. We compute four series of simulations with the latest version of our code, which contains updated equation of state and opacity tables as well as other improvements. Each series consists of a run without a cutoff in planetesimal accretion, plus up to three runs with a cutoff at a particular core mass. The first series of runs is computed with an atmospheric opacity due to grains (hereafter referred to as ‘grain opacity’) that is 2% of the interstellar value and . Cutoff runs are computed for core masses of 10, 5, and 3 M. The second series of Jupiter models is computed with the grain opacity at the full interstellar value and . Cutoff runs are computed for core masses of 10 and 5 M. The third series of runs is computed with the grain opacity at 2% of the interstellar value and . One cutoff run is computed with a core mass of 5 M. The final series consists of one run, without a cutoff, which is computed with a temperature dependent grain opacity (i.e., 2% of the interstellar value for ramping up to the full interstellar value for ) and . Our results demonstrate that reducing grain opacities results in formation times less than half of those for models computed with full interstellar grain opacity values. The reduction of opacity due to grains in the upper portion of the envelope with has the largest effect on the lowering of the formation time. If the accretion of planetesimals is not cut off prior to the accretion of gas, then decreasing the surface density of planetesimals lowers the final core mass of the protoplanet, but increases the formation timescale considerably. Finally, a core mass cutoff results in a reduction of the time needed for a protoplanet to evolve to the stage of runaway gas accretion, provided the cutoff mass is sufficiently large. The overall results indicate that, with reasonable parameters, it is possible that Jupiter formed at 5 AU via the core accretion process in 1 Myr with a core of 10 M or in 5 Myr with a core of 5 M.  相似文献   

16.
17.
Accurate temperature–depth profiles may help to assess the temperature variations associated with the climate changes in the past. Ninety-eight ground surface temperature histories inverted from the temperature–depth borehole logs drilled on the territory of the Czech Republic [Bodri, L., ermák, V., 1995. Climate changes of the last millennium inferred from borehole temperatures: results from the Czech Republic — Part I. Global Planet. Change 11, pp. 111–125; Bodri, L., ermák, V., 1997. Climate changes of the last two millennia inferred from borehole temperatures: results from the Czech Republic — Part II. Global Planet. Change 14, pp. 163–173.] are used to reconstruct the regional patterns of the respective climate change. The climate was mapped for the following periods: 1100–1300 A.D. (Little Climatic Optimum), 1400–1500 A.D., 1600–1700 A.D. (main phase of the Little Ice Age), and for the most recent climate trend after year 1960. Comparison of the obtained maps with the meteorological observations and proxy climatic reconstructions confirmed good applicability of the “geothermal” paleoclimatic reconstructions for the regional studies.  相似文献   

18.
From the volume-limited Main galaxy sample of the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we construct three samples with g–r color bins , labeled S1–S3, to investigate how other properties of galaxies depend on environment at fixed color. For each sample, we measure the local three-dimensional galaxy density in a comoving sphere with radius equal to the distance to the 5th nearest galaxy for each galaxy, select about 5% galaxies and construct the two subsamples at both extremes of density. Our study suggests that the environmental dependence of luminosity is mainly due to the environmental dependence of galaxy color and the correlation between color and luminosity. In addition, we preferentially conclude that concentration index and morphologies are not strongly correlated with local density at fixed color, and that galaxy color is a galaxy property very predictive of the local environment. Because SDSS spectroscopy is incomplete for bright galaxies at very low redshifts, we also use a volume-limited Main galaxy sample with a lower redshift limit z = 0.05, which contains 94,954 galaxies at 0.05 < z < 0.089 with −22.40 < Mr < −20.16, and reach the same conclusions.Due to the bimodality of the u–r color distribution, we classify galaxies as ‘red’ and ‘blue’, respectively, and further subdivide the samples into star-forming galaxies and passive ones using Hα equivalent width, W0(Hα). Results show that color and star formation activity of galaxies are galaxy properties very predictive of the local environment.  相似文献   

19.
We have completed a series of local N-body simulations of Saturn’s B and A rings in order to identify systematic differences in the degree of particle clumping into self-gravity wakes as a function of orbital distance from Saturn and dynamical optical depth (a function of surface density). These simulations revealed that the normal optical depth of the final configuration can be substantially lower than one would infer from a uniform distribution of particles. Adding more particles to the simulation simply piles more particles onto the self-gravity wakes while leaving relatively clear gaps between the wakes. Estimating the mass from the observed optical depth is therefore a non-linear problem. These simulations may explain why the Cassini UVIS instrument has detected starlight at low incidence angles through regions of the B ring that have average normal optical depths substantially greater than unity at some observation geometries [Colwell, J.E., Esposito, L.W., Srem?evi?, M., Stewart, G.R., McClintock, W.E., 2007. Icarus 190, 127-144]. We provide a plausible internal density of the particles in the A and B rings based upon fitting the results of our simulations with Cassini UVIS stellar occultation data. We simulated Cassini-like occultations through our simulation cells, calculated optical depths, and attempted to extrapolate to the values that Cassini observes. We needed to extrapolate because even initial optical depths of >4 (σ > 240 g cm−2) only yielded final optical depths no greater than 2.8, smaller than the largest measured B ring optical depths. This extrapolation introduces a significant amount of uncertainty, and we chose to be conservative in our overall mass estimates. From our simulations, we infer the surface density of the A ring to be , which corresponds to a mass of . We infer a minimum surface density of for Saturn’s B ring, which corresponds to a minimum mass estimate of . The A ring mass estimate agrees well with previous analyses, while the B ring is at least 40% larger. In sum, our lower limit estimate is that the total mass of Saturn’s ring system is 120-200% the mass of the moon Mimas, but significantly larger values would be plausible given the limitations of our simulations. A significantly larger mass for Saturn’s rings favors a primordial origin for the rings because the disruption of a former satellite of the required mass would be unlikely after the decay of the late heavy bombardment of planetary surfaces.  相似文献   

20.
J.P. Emery  D.P. Cruikshank 《Icarus》2006,182(2):496-512
We present thermal emission spectra (5.2-38 μm) of the Trojan asteroids 624 Hektor, 911 Agamemnon, and 1172 Aneas. The observations used the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope. Emissivity spectra are created by dividing the measured Spectral Energy Distribution (SED) by a model of the thermal continuum. We employ the Standard Thermal Model (STM), allowing physical parameters (e.g., radius and albedo) to vary in order to find the best thermal continuum fit to the SED. The best-fit effective radius (R) and visible geometric albedo (pv) for Hektor (R=110.0±7.3, ) and Aneas (R=69.1±5.1, ) agree very well with previous estimates, and for Agamemnon (R=71.5±5.2, ) we find slightly a smaller size and higher albedo than previously derived. Other thermal models (e.g., thermophysical) result in estimates of R and pv that vary a few percent from the STM, but the resulting emissivity spectra are identical. The emissivity spectra of all three asteroids display an emissivity plateau near 10-μm and another broader rise from ∼18 to 28 μm. We interpret these as indications of fine-grained silicates on the surfaces of these asteroids. The emissivity spectra more closely resemble emission spectra from cometary comae than those from solid surfaces and measured in the laboratory for powdered meteorites and regolith analogs. We hypothesize that the coma-like emission from the solid surfaces of trojans may be due to small silicate grains being imbedded in a relatively transparent matrix, or to a very under-dense (fairy-castle) surface structure. These hypotheses need to be tested by further laboratory and theoretical scattering work as well as continued thermal emission observations of asteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号