首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knowledge of peatland initiation, accumulation, and decline or cessation is critical in understanding peatland development and the related carbon source/sink effect. In this study, we investigated the development of three peat profiles along the eastern margin of the Tibetan Plateau (ETP) and compared the results with those of our previous work along this transect. Our work showed that the initiation over the northern ETP is later and the slowdown/cessation earlier than in the middle to southern ETP. The timing of optimum peatland formation over the northern ETP lags the Holocene climatic optimum. These spatio-temporal differences are likely to be related to the intensity of Asian summer monsoon. Our work suggests that some peatlands along the ETP transect have returned or are now returning their previously captured carbon to the atmosphere and thus act as carbon sources. Some peatlands still have net accumulation at present, but the rates have been reduced concomitant with the decreasing summer monsoon intensity. We speculate that more of the previously stored carbon in the ETP peatlands will be re-emitted to the atmosphere if the aridity continues, as might occur under a continuous global-warming scenario.  相似文献   

2.
通过青藏高原东缘甘孜地区7件砂岩磷灰石样品裂变径迹分析,取得了测试样品的表观年龄,运用模拟退火法对所有样品进行了热史模拟,获得了样品的热演化史;分析出甘孜地区在新生代古近纪以来经历了相似的构造演化过程,强构造隆升阶段分别发生在古近纪46~30 Ma间和新近记9 Ma以来,平均抬升速率和平均抬升量分别为1261 m/Ma、2634 m和388 m/Ma、1043 m;甘孜地区构造隆升具有不平衡性、阶段性、地区性差异,冷却速率、抬升速率和抬升幅度也存在偏差。  相似文献   

3.
On the eastern margin of the Tibetan Plateau, the Anninghe, Zemuhe and Xiaojiang faults comprise a N–S-trending active left-lateral fault system extending more than 700 km. The northernmost Anninghe Fault extends for ∼200 km, consisting of two sub-parallel N–S trending strands. Along the western strand, the fault traces occur almost strictly along the broad and flat Anninghe valley, displacing high terraces, alluvial fans and tributary channels of the Anninghe River. The eastern strand, on the other hand, cuts through the steep mountain slopes, with prominent rectilinear upslope-facing scarps and shutter ridges against pounded fluvial sediments from the east. The displacements along the eastern strand are much larger than that along the western strand, indicating the eastern strand is the major fault absorbing the E–W shortening. This study demonstrates that the Anninghe Fault is now acting as a relief-building boundary fault and absorbing the E–W compression under the eastwards motion of the Tibetan Plateau. Accordingly, the Anninghe region is a topographic transition area from steep relief to low gradient topography. The variation in topographic gradient is consistent with the differing tectonic regime between southern and northern parts of the Tibetan Plateau.  相似文献   

4.
青藏高原东南缘发育数十万平方千米的广阔地貌过渡带与大面积低起伏地貌面,独特的地貌提供了解读高原构造拓展与地表隆升时间、过程以及机制的理想窗口。为揭示青藏高原东南缘新生代构造变形响应和地貌演化过程,通过构造解析、构造地貌以及低温热年代学数据分析对金沙江下游流域进行综合研究。结果表明青藏高原东南缘早在始新世即已处于北西向为主的区域性挤压条件下而发生广泛褶皱变形。尽管始新世存在区域性变形响应,但青藏高原东南缘金沙江下游地区在古近纪为低海拔丘陵地貌,地表隆升幅度极为有限。晚渐新世—早中新世研究区总体处于长期的低剥蚀速率环境,促进了低海拔平缓地貌的形成。晚新近纪以来,青藏高原东南缘发生区域性缩短变形与显著地表隆升,大型水系同步下蚀,共同塑造形成现今较高海拔的低起伏地貌面与深切峡谷并存的特征性地貌。研究结果支持青藏高原东南缘晚新近纪以来的隆升与地壳构造缩短及增厚密切相关,而中下地壳塑性流动增厚机制并非必不可少。  相似文献   

5.
青藏高原东缘新构造运动复杂而强烈,地震与地质灾害多发,区域地壳稳定性评价工作意义重大。基于地质力学和大陆动力学相互补充的区域地壳稳定性评价理论,选择深部地球物理场、区域构造变形、地震活动、区域构造应力场作为内动力因素,地形地貌、降雨量、河流冲蚀组合计算所产生的地质灾害条件作为外动力因素,地层岩性和活动断裂影响带作为介质因素,进行了区域地壳稳定性评价。结果表明,采用地质要素梯度来反映内动力作用和通过地质环境要素综合分析表现外动力作用是提高评价准确性的有效手段;青藏高原东缘可分为8个构造特征差异显著的一级分区,75个综合因素差别较大的二级分区,653个外动力条件有一定差别的三级分区;总体而言,龙门山断裂、鲜水河断裂和安宁河断裂带构成的Y字型构造格架断裂带附近的地壳稳定性最差,西部次之,东部最好,北部区块较完整,南部复杂破碎。  相似文献   

6.
Since the Cenozoic, the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India–Asia collision. However, the mechanism and timing of these tectonic processes still remain debated. Here, using apatite fission track dating and inverse thermal modeling, we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau. In contrast to previous views, we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites, indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times. In addition, we also suggest that the 5–2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau, because it led to the increase in atmospheric CO2 level and a hotter upper crust than before, which are efficient for suddenly fast rock weathering and erosion. Finally, we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate.  相似文献   

7.
This study examines the relationship between high positive isostatic gravity anomalies (IGA), steep topography and lower crustal extrusion at the eastern margin of the Tibetan Plateau. IGA data has revealed uplift and extrusion of lower crustal flow in the Longmen Shan Mountains (the LMS). Firstly, The high positive IGA zone corresponds to the LMS orogenic belt. It is shown that abrupt changes in IGA correspond to zones of abrupt change of topography, crustal thickness and rock density along the LMS. Secondly, on the basis of the Airy isostasy theory, simulations and inversions of the positive IGA were conducted using three-dimensional bodies. The results indicated that the LMS lacks a mountain root, and that the top surface of the lower crust has been elevated by 11 km, leading to positive IGA, tectonic load and density load. Thirdly, according to Watts’s flexural isostasy model, elastic deflection occurs, suggesting that the limited (i.e. narrow) tectonic and density load driven by lower crustal flow in the LMS have led to asymmetric flexural subsidence in the foreland basin and lifting of the forebulge. Finally, based on the correspondence between zones of extremely high positive IGA and the presence of the Precambrian Pengguan-Baoxing complexes in the LMS, the first appearance of erosion gravels from the complexes in the Dayi Conglomerate layer of the Chengdu Basin suggest that positive IGA and lower crustal flow in the LMS took place at 3.6 Ma or slightly earlier.  相似文献   

8.
The northern Tibetan Plateau has evolved a unique basin-range structure characterized by alternating elongated mountain ranges and basins over a history of multiple tectonic and fault activities. The Subei basin recorded evolution of this basin-range structure. In this study, detailed detrital apatite fission track (AFT) thermochronological studies in conjunction with previously documented data reveal provenance of the Subei basin, important information about the Indo-Eurasia collision, and two Miocene uplift and exhumation events of the northern Tibetan Plateau. Detrital AFT analyses combined with sedimentary evidences demonstrate that the Danghenanshan Mountains is the major provenance of the Subei basin. In addition, very old age peaks indicate that part sediments in the Subei basin are recycling sediments. Age peak populations of 70–44 Ma and 61–45 Ma from the lower and upper Baiyanghe formations record the tectono-thermal response to the Indo-Eurasia collision. Combined detrital AFT thermochronology, magnetostratigraphy and petrography results demonstrate the middle Miocene uplift and exhumation event initiated 14–12 Ma in the Subei basin, which may resulted from the Miocene east-west extension of the Tibetan Plateau. Another stronger uplift and exhumation event occurred in the late Miocene resulted from strengthened tectonic movement and climate. A much younger AFT grain age, breccia of diluvial facies and boulders of root fan subfacies record the late Miocene unroofing in the Danghenanshan Mountains.  相似文献   

9.
东昆仑造山带多期隆升历史的地质热年代学证据   总被引:5,自引:1,他引:5  
对格尔木附近东昆仑山花岗岩类侵入岩体中锆石和磷灰石进行裂变径迹(FT)定年与热历史的模拟,得到了中、新生代东昆仑山多阶段冷却与隆升的构造热历史。锆石FT年龄反映了东昆仑山中生代2期冷却历史,分别为第1期侏罗纪(194.1~ 144.4Ma)和第2期早白垩世(115.7~100.2Ma)冷却历史。磷灰石FT年龄和热历史模拟给出新生代3期冷却历史,分别为第1期始新世早期(约52.9Ma)、第2期中新世中期(16.3~10.0Ma)和第3期上新世(5.1~0.9Ma)冷却历史。东昆仑山新生代3期冷却历史与逆冲断层系的发育紧密相关。新生代第1期(约52.9Ma)可能反映了柴达木盆地南缘一个夭折了的前陆盆地的存在。新生代第2期(16.3~10.0Ma)和第3期(5.1~0.9Ma)冷却年龄具有规律性的空间分布,反映了东昆仑山背驮式逆冲断层系的发育历史,表明柴达木盆地主要是作为东昆仑山的背驮式盆地而建立盆山耦合关系的。根据新生代第2期冷却历史的结束与昆仑断裂大规模左行走滑运动开始的年龄对比,推测东昆仑山区域变形作用由挤压向剪切转换的时间可能在10.0Ma左右。  相似文献   

10.
The Qiangtang basin is located in the central Tibetan Plateau. This basin has an important structural position,and further study of its tectonic and thermal histories has great significance for understanding the evolution of the Tibetan Plateau and the hydrocarbon potential of marine carbonates in the basin. This study focuses on low temperature thermochronology and in particular conducted apatite fission track analysis. Under constraints provided by the geological background,the thermal history in different tectonic units is characterized by the degree of annealing of samples,and the timing of major(uplift-erosion related) cooling episodes is inferred. The cooling history in the Qiangtang basin can be divided into two distinct episodes. The first stage is mainly from the late Early Cretaceous to the Late Cretaceous(69.8 Ma to 108.7 Ma),while the second is mainly from the MiddleLate Eocene to the late Miocene(10.3 Ma to 44.4 Ma). The first cooling episode records the uplift of strata in the central Qiangtang basin caused by continued convergent extrusion after the BangongNujiang ocean closed. The second episode can be further divided into three periods,which are respectively 10.3 Ma,22.6–26.1 Ma and 30.8–44.4 Ma. The late Oligocene-early Miocene(22.6–26.1 Ma) is the main cooling period. The distribution and times of the earlier uplift-related cooling show that the effect of extrusion after the collision between Eurasian plate and India plate obviously influenced the Qiangtang basin at 44.4 Ma. The Qiangtang basin underwent compression and started to be uplifted from the middle-late Eocene to the early Oligocene(45.0–30.8 Ma). Subsequently,a large-scale and intensive uplift process occurred during the late Oligocene to early Miocene(26.1–22.6 Ma) and the basin continued to undergo compression and uplift up to the late Miocene(10.3 Ma). Thus,uplift-erosion in the Qiangtang basin was intensive from 44.5 Ma to about 10 Ma. The timing of cooling in the second episode shows that the uplift of the Qiangtang basin was caused by the strong compression after the collision of the Indian plate and Eurasian plate. On the whole,the new apatite fission-track data from the Qiangtang basin show that the Tibetan Plateau started to extrude and uplift during 45–30.8 Ma. The main period of uplift and formation of the Tibetan Plateau took place about 22.6–26.1 Ma,and uplift and extrusion continued until the late Miocene(10.3 Ma).  相似文献   

11.
田承盛 《地质与勘探》2014,50(5):833-839
青海省哈日扎多金属矿区位于东昆仑东段,属东昆中多旋回岩浆弧带,是新的矿产勘查基地,成矿作用主要受NE和NW向两组构造蚀变带控制。本文通过不同类型样品的锆石裂变径迹定年分析,探讨区内的构造活动。所获得的10个样品年龄为116~204 Ma,并由3个组年龄构成,即204~181 Ma,142~168 Ma和116~120 Ma。第1组年龄204~181 Ma反映印支晚期三叠纪末羌塘地块与昆仑地块碰撞的地质事件及其时限;后两组年龄主要是晚侏罗世~早白垩世冈底斯地体向北与羌塘地体碰撞汇聚的响应,活动时限为168~116 Ma。第2和3组年龄同时表明本区燕山期构造活动存在强度差异,即有两个强作用期。同时,3组年龄也揭示本区具有多期次成矿活动。  相似文献   

12.
范桃园  孙玉军  吴中海 《地质通报》2014,33(04):497-502
在印度板块与欧亚板块的碰撞作用下,青藏高原受到华南块体、鄂尔多斯块体等不同程度的阻挡,引起高原的整体隆升。青藏高原东南缘发生物质向南“逃逸”,青藏高原东缘现今的地壳运动表现为围绕青藏高原东构造结发生顺时针的旋转。针对青藏高原东缘的旋转变形特征,基于以大型活动断裂为界的块体构造模型,利用粘弹性接触单元有限元模拟,分析了控制青藏高原东缘旋转变形的动力学环境,模拟的GPS速度与实测GPS速度能够较好的地吻合,构造应力场分布特征和活动断层的性质也能够较大程度地吻合,模拟过程采用的边界及其代表的动力学环境表明,青藏高原东缘整体受控于印度板块的持续碰撞和稳定的华南板块的阻挡,在下地壳的拖曳和重力作用下,青藏高原物质从南部边界“逃逸”。在“逃逸”过程中,受印度板块斜向俯冲作用的影响,沿实皆断裂缅甸板块对巽他板块的剪切拉升作用是形成围绕喜马拉雅东构造结的旋转运动和地壳变形的重要因素,也是青藏高原东南缘旋转活动构造体系的主要影响因素之一。  相似文献   

13.
青藏高原东缘旋转变形机制的数值模拟   总被引:1,自引:0,他引:1  
在印度板块与欧亚板块的碰撞作用下,青藏高原受到华南块体、鄂尔多斯块体等不同程度的阻挡,引起高原的整体隆升。青藏高原东南缘发生物质向南"逃逸",青藏高原东缘现今的地壳运动表现为围绕青藏高原东构造结发生顺时针的旋转。针对青藏高原东缘的旋转变形特征,基于以大型活动断裂为界的块体构造模型,利用粘弹性接触单元有限元模拟,分析了控制青藏高原东缘旋转变形的动力学环境,模拟的GPS速度与实测GPS速度能够较好的地吻合,构造应力场分布特征和活动断层的性质也能够较大程度地吻合,模拟过程采用的边界及其代表的动力学环境表明,青藏高原东缘整体受控于印度板块的持续碰撞和稳定的华南板块的阻挡,在下地壳的拖曳和重力作用下,青藏高原物质从南部边界"逃逸"。在"逃逸"过程中,受印度板块斜向俯冲作用的影响,沿实皆断裂缅甸板块对巽他板块的剪切拉升作用是形成围绕喜马拉雅东构造结的旋转运动和地壳变形的重要因素,也是青藏高原东南缘旋转活动构造体系的主要影响因素之一。  相似文献   

14.
Daluo Mountains lie at front of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau, and are the landform boundary zone between the active Tibetan Plateau and the stable North China Craton. Studying of the late Cenozoic uplift evolution of Daluo Mountains is important for understanding the expansion mechanism of the northeastern margin of the Tibetan Plateau and its influence on the western North China Craton. In this study, the late Cenozoic uplift of Daluo Mountains is constructed from the development of the late Cenozoic alluvial fan around Daluo Mountains. The entire sedimentary sequence and framework of the fan was revealed by the newly obtained drilling core data. The cosmogenic nuclide, optically stimulated luminescence, and detrital zircon U-Pb dating results provide new evidences for discussion about the initial timing of the late Cenozoic uplift of Daluo Mountains and the key stages of uplift during the Pleistocene. The late Cenozoic alluvial fan at front of Daluo Mountains overlies a set of fluvial-facies strata; therefore, development of the alluvial-fan marks the start of late Cenozoic uplift of Daluo Mountains. The timing of this event can be constrained to ~4.64 Ma. Two extensive gravel layers (dated to ca. 0.76–0.6 Ma and ~0.05 Ma) developed during the Pleistocene, indicating two episodes of considerable uplift. This study provides a new time scale for the uplift and expansion of the arcuate tectonic belt at the northeastern margin of the Tibetan Plateau.  相似文献   

15.
祁连山东段剥蚀面与青藏高原隆升   总被引:3,自引:0,他引:3  
祁连山北麓广泛分布着一级剥蚀面, 它是山地阶段性隆升的产物. 通过对剥蚀面之上砾石层中细砂物质的ESR测年以及黄土地层的古地磁测定, 认为祁连山东段的剥蚀面最终解体于1.4 Ma BP. 这与邻近区域陇西盆地的剥蚀面解体时代(1.8 Ma BP)有所差异, 这或许是第四纪期间青藏高原阶段性隆升在区域间存在着差异特征的重要表现.  相似文献   

16.
Thrusting of the North Lhasa Block in the Tibetan Plateau   总被引:9,自引:1,他引:8  
A huge thrust system, the North Lhasa Thrust (NLT), was discovered in the northern Lhasa block of the Tibetan Plateau based on geological mapping of the Damxung region and its vicinity, the Deqen-Lunpola traverse and the Amdo-Bam Co profile. The NLT consists of the Dongqiao-Lunpola thrust (DLT), the west Namco thrust (WNT) and the south Damxung thrust (SDT) and ductile shear zones, ophiolite slices and folds extending in a WNW direction. Major thrust faults of the NLT seem to merge into a single deep-seated detachment of the upper-crust and totally displaced southward as far as 100-120 km. Chronological analyses with 39Ar-40Ar of plagioclase and hornblende, Rb-Sr isochron of minerals and fission-tracks of apatite from mylonite within the WNT yield ages of 174-173 Ma, 109 Ma and 44 Ma, showing 3 periods of thrusting in the north Lhasa block caused by subduction of the Tethys oceanic plate and the India-Eurasia continental collision respectively.  相似文献   

17.
喀喇昆仑断裂系(KF)位于青藏高原西缘,具有右旋走滑性质,从帕米尔高原至尼泊尔西部延绵1 000多km。长期以来,对于喀喇昆仑断裂活动的起始时间、总位移量、在不同时间尺度上的滑移速率以及断层两端的精确位置等问题,都存在较大争议。为了更好的了解喀喇昆仑断裂现今的运动学特征及其与喜马拉雅—青藏高原陆内碰撞造山带的关系,确定喀喇昆仑断裂的滑移速率历史以及它随时间和/或空间的变化规律是极其重要的。目前研究表明,从现今的大地测量学尺度到几个百万年的地质学尺度,喀喇昆仑断裂走滑速率的变化范围为3~10 mm/yr。本论文对断裂各段的分布情况进行了详细描述,阐述了获得晚第四纪以来走滑速率的方法,回顾了喀喇昆仑断裂在大地测量学、晚第四纪以及地质学等不同时间尺度的走滑速率,并重点讨论了晚第四纪以来断裂的走滑速率。然后,确定了喀喇昆仑断裂北端的精确位置、讨论了其运动学意义和地震灾害效应。鉴于喀喇昆仑断裂具有长期的活动历史、规模巨大、运动速率较高,我们认为即使板块内部小尺度的似连续变形非常发育,板块模型依然可以很好的解释由于印度-亚洲板块碰撞造成的喜马拉雅北部的岩石圈变形。喀喇昆仑断裂、阿尔金断裂、昆仑断裂及龙木错—郭扎错断裂等青藏高原周缘的主要走滑断裂对青藏高原向东的挤出起着重要的调节作用。  相似文献   

18.
喀喇昆仑断裂系(KF)位于青藏高原西缘,具有右旋走滑性质,从帕米尔高原至尼泊尔西部延绵1000多km.长期以来,对于喀喇昆仑断裂活动的起始时间、总位移量、在不同时间尺度上的滑移速率以及断层两端的精确位置等问题,都存在较大争议.为了更好的了解喀喇昆仑断裂现今的运动学特征及其与喜马拉雅—青藏高原陆内碰撞造山带的关系,确定喀喇昆仑断裂的滑移速率历史以及它随时间和/或空间的变化规律是极其重要的.目前研究表明,从现今的大地测量学尺度到几个百万年的地质学尺度,喀喇昆仑断裂走滑速率的变化范围为3~10 mm/yr.本论文对断裂各段的分布情况进行了详细描述,阐述了获得晚第四纪以来走滑速率的方法,回顾了喀喇昆仑断裂在大地测量学、晚第四纪以及地质学等不同时间尺度的走滑速率,并重点讨论了晚第四纪以来断裂的走滑速率.然后,确定了喀喇昆仑断裂北端的精确位置、讨论了其运动学意义和地震灾害效应.鉴于喀喇昆仑断裂具有长期的活动历史、规模巨大、运动速率较高,我们认为即使板块内部小尺度的似连续变形非常发育,板块模型依然可以很好的解释由于印度-亚洲板块碰撞造成的喜马拉雅北部的岩石圈变形.喀喇昆仑断裂、阿尔金断裂、昆仑断裂及龙木错—郭扎错断裂等青藏高原周缘的主要走滑断裂对青藏高原向东的挤出起着重要的调节作用.  相似文献   

19.
甘孜黄土与青藏高原冰冻圈演化   总被引:8,自引:1,他引:8  
方小敏  陈富斌 《冰川冻土》1996,18(3):193-200
逐样系统交变退磁磁性测量表明,86m的甘孜黄土剖面形成于约81.84×10^4a BP前。剖面中黄土石英砂类型分析揭示出至少约81.84×10^4a BP以前,高原已进入冰冻圈,并且很快于约76×10^4 aBP前冰川规模达到最大,并持续至约53×10^4qa BP前,倒数第二次冰川规模次之,然后冰川规模明显减少。  相似文献   

20.
Late Triassic granitoids in the Songpan-Garzê Fold Belt (SGFB), on the eastern margin of the Tibetan Plateau, formed at 230 to 220 Ma and can be divided into two groups. Group 1 are high-K calc-alkaline rocks with adakitic affinities (K-adakites), with Sr > 400 ppm, Y < 11 ppm, strongly fractionated REE patterns ((La/Yb)N = 32–105) and high K2O/Na2O (≈ 1). Group 2 are ordinary high-K calc-alkaline I-types with lower Sr (< 400 ppm), higher Y (> 18 ppm) and weakly fractionated REE patterns ((La/Yb)N < 20). Rocks of both groups have similar negative Eu anomalies (Eu/Eu = 0.50 to 0.94) and initial 87Sr/86Sr (0.70528 to 0.71086), but group 1 rocks have higher εNd(t) (− 1.01 to − 4.84) than group 2 (− 3.11 to − 6.71). Calculated initial Pb isotope ratios for both groups are: 206Pb/204Pb = 18.343 to 18.627, 207Pb/204Pb = 15.610 to 15.705 and 208Pb/204Pb = 38.269 to 3759. Group 1 magmas were derived through partial melting of thickened and then delaminated TTG-type, eclogitic lower crust, with some contribution from juvenile enriched mantle melts. Group 2 magmas were generated by partial melting of shallower lower crustal rocks. The inferred magma sources of both groups suggest that the basement of the SGFB was similar to the exposed Kangding Complex, and that the SGFB was formed in a similar manner to the South China basement. Here, passive margin crust was greatly thickened and then delaminated, all within a very short time interval ( 20 Myr). Such post-collisional crustal thickening could be the tectonic setting for the generation of many adakitic magmas, especially where there is no spatial and temporal association with subduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号