首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
龙门山冲断隆升及其走向差异的裂变径迹证据   总被引:4,自引:1,他引:3  
大量的低温年代学研究用来讨论龙门山晚新生代的隆升,但很少涉及其走向差异和中生代隆升。本文分别沿龙门山北、中、南段3条剖面进行了锆石和磷灰石裂变径迹测试,结合已有的热年代学数据,以期揭示整个中-新生代期间龙门山隆升历史及其时空变化。中生代以来,龙门山主要有印支期(约200 Ma)、早白垩世末(约100 Ma)、早新生代(65~30 Ma)以及晚中新世(15~9 Ma)等或快或慢的冷却事件,总体上经历了中生代至早新生代的缓慢冷却和晚新生代快速冷却2个阶段,快速剥露开始于15~9 Ma,剥蚀速率由早期的0.1 mm/a增加到0.15~0.3 mm/a左右,局部可达0.9 mm/a左右。走向上,龙门山北段相对偏小的锆石裂变径迹年龄和相对偏大的磷灰石裂变径迹年龄反映其在中生代较中、南段隆升更快,而裂变径迹年龄总体上从北段向中、南段减小,表明中、南段在新生代发生了更快的隆升。倾向上,多种热年代学数据显示新生代期间在北川断裂和彭灌断裂两侧存在明显的差异剥露,这种差异在中、南段表现比北段更为突出。龙门山晚新生代快速隆升和剥露是青藏高原区域隆升背景上叠加的冲断活动所致,而非下地壳流动驱动。  相似文献   

2.
The growth of central Tibet remains elusory, albeit important in evaluating different topographic growth models accounting for the Tibetan Plateau development. Thermochronological records in the northern Qiangtang terrane (QT) provide valuable information for investigating the cooling and exhumation history in central Tibet. New apatite fission track data, assisted by inverse thermal modelling, reveal two stages of accelerated cooling. The Early Cretaceous cooling is related with refrigeration of the QT and exhumation probably induced by crustal shortening. The Eocene‐Oligocene renewed cooling reflects the far‐field contraction after the onset of the India‐Asia collision and Cenozoic crustal shortening deformation in the QT, coupled with thermal relaxation and transient lithospheric removal. Our data support models indicating that Cretaceous crustal shortening produced a thickened crust in the QT, whereas the present‐day elevation was established during Eocene‐Oligocene due to crustal shortening, continental subduction and lithospheric delamination.  相似文献   

3.
DEFORMATIONAL AND METAMORPHIC HISTORY OF THE CENTRAL LONGMEN MOUNTAINS, SICHUAN CHINA1 ArneDC ,WorleyBA ,WilsonCJL ,etal.Differentialexhumationinresponsetoepisodicthrustingalongtheeasternmar ginoftheTibetanPlateau[J] .Tectonophysics,1997,2 80 :2 39~ 2 56 . 2 ChenSF ,WilsonCJL ,WorleyBA .TectonictransitionfromtheSongpan GarzeFoldBelttotheSichuanBasin,south westernChina[J] .BasinResearch ,1995,7:2 35~ 2 53. 3 ChenSF ,WilsonCJL .Emplaceme…  相似文献   

4.
Between the Qiangtang Block and Yalung-Zangpo Suture Zone in the south-central Tibetan Plateau, the following geological units and suture zones have been identified from south to north: the Gangdese Granitic Belt, the Lhasa Block, the Nyainqentanghla Shear Zone, the Dangxiong–Sangxiong Tectono-granitic Belt and the Bangong–Nujiang Suture Zone. To better constrain the tectonic evolution and cooling histories of these units, 40Ar/39Ar muscovite, biotite and K-feldspar, as well as apatite fission track dating and thermochronological analysis have been carried out. The analytical results indicate that the south-central Tibetan Plateau, with the exception of the Nyainqentanghla Shear Zone, provides a record of three cooling stages at 165–150, 130–110 and ∼45–35 Ma. Fission-track data modelling also indicates that the stages of cooling were different in the different tectonic belts or blocks. Very different cooling phases occurred in the south-central Tibetan Plateau, compared with southern Tibet, as well as along the Yalung–Zangpo Suture Zone. There is no thermochronological evidence to indicate that the south-central part of Tibetan Plateau was influenced by the underthrusting of Indian Plate.The three-stage cooling history and the stages of tectonic exhumation were controlled completely by the closure of the Bangong–Nujiang Suture Zone along its eastern segment during Middle–Late Jurassic (165–150 Ma) and its western segment in the Early–Late Cretaceous (130–110 Ma), as well as by the collision between the Indian and Asian plates in the Paleogene (45–35 Ma).  相似文献   

5.
2008年汶川Ms8.0地震在龙门山中段的彭灌断裂带产生的地表破裂,是该地震产生的第二大地表破裂带.综合应用地质、钻井以及二维、三维地震数据,利用横贯前山带的多条人工地震反射剖面,对彭灌断裂带产生同震破裂的断层进行准确识别和解释.研究表明,龙门山中段的彭灌断裂带是一套由3条主要断层和次级广泛发育的断裂组合构成,浅层表现...  相似文献   

6.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   

7.
通过对采自龙门山南段、中段和北段花岗岩与砂岩样品中的磷灰石、锆石的裂变径迹年龄的分析,发现中生代以来龙门山的隆升在走向上存在分段性,在近东西方向上存在分带性。从松潘-甘孜褶皱带→龙门山冲断带→川西前陆盆地:松潘-甘孜褶皱带整体发生区域隆升,裂变径迹年龄与高程呈正相关关系;在龙门山冲断带,裂变径迹年龄与高程呈负相关关系或无关,说明冲断层在隆升过程中起主导作用;在川西前陆盆地,样品随埋深发生部分或全部退火。茂县-汶川断裂两侧锆石裂变径迹年龄差异明显而磷灰石裂变径迹年龄无明显差异,显示茂县-汶川断裂以西地区在38~10 Ma发生过更为快速的隆升;北川断裂两侧磷灰石裂变径迹年龄差异明显,表明北川断裂以西地区在10~0 Ma发生过快速隆升。从走向上看,从龙门山北段向南段,锆石裂变径迹年龄呈逐渐增大的趋势,这可能意味着印支末期或燕山早期,龙门山北段发生了更快的隆升;而磷灰石裂变径迹年龄总体上从龙门山北段向中段和南段呈递减趋势,反映新生代期间龙门山中、南段隆升更快。  相似文献   

8.
The Proterozoic Eastern Ghats Mobile Belt along the east coast of India shares a thrusted lower contact with the surrounding cratons. The thrust, known as the Terrane Boundary shear zone, is associated with two large lateral ramps resulting in a curved outline on the northwestern corner of the mobile belt. The Eastern Ghats Mobile Belt is divided into two lithotectonic units, the Lathore Group and the Turekela Group, based on their lithological assemblages and deformational history. On the basis of published data from a Deep Seismic Sounding (DSS) profile of the Eastern Ghats crust, the Terrane Boundary Shear Zone is considered to be listric in nature and acts as the sole thrust between craton and mobile belt. The Lathore and Turekela Groups are nappes. With this structural configuration the NW part is described as a fold thrust belt. However, the thrusting postdates folding and granulite metamorphism that occurred in the Eastern Ghats, as in the Caledonide type of fold thrust belt of NW Scotland. The Terrane Boundary Shear Zone is interpreted to be contiguous with the Rayner-Napier boundary of the Enderby Land in a Gondwana assembly.  相似文献   

9.
We present the first fission‐track results from the Grenvillian Oaxacan Complex, southern Mexico. Time–temperature modelling of the data indicates that two significant Mesozoic cooling episodes are recorded in the Oaxacan Complex and these are interpreted as resulting from exhumation. The older cooling event took place from the Late Triassic to Middle Jurassic and is possible linked to the break‐up of Pangea (including the initial opening of the Gulf of Mexico during the Jurassic). The younger exhumation period in the Early Cretaceous is contemporaneous with the final stages of rifting of the Gulf of Mexico. Key stratigraphic records also provide independent evidence for these exhumation episodes. In our view, both Mesozoic rapid exhumation events were controlled by the activity of the Caltepec Fault Zone and the Oaxaca Fault. Our data suggest that both these large fault systems have remained active since, at least, the Late Triassic.  相似文献   

10.
In the north-western Gawler Craton of South Australia, the Karari Shear Zone defines a boundary between late-Archean to earliest Paleoproterozoic rocks, which have remained largely undisturbed since the earliest Paleoproterozoic, and younger Paleoproterozoic rocks that have been reworked through multiple late Paleoproterozoic and Mesoproterozoic metamorphic and deformation events. The history of movement across the Karari Shear Zone has been investigated via new U–Pb and 40Ar/39Ar geochronology, in combination with pre-existing geochronological and metamorphic constraints, as well as the structural geometry revealed by a recently acquired reflection seismic transect. The available data suggest a complex history of shear-zone movement in at least four stages, with contrasting sense of motion at different times. The first period of movement across the Karari Shear Zone is inferred to have been a period of extension at ca 1750–1720 Ma. This was likely closely followed by reactivation during the Kimban Orogeny between ca 1720 and 1680 Ma, although the sense of movement during this period is unclear. Further reactivation, in a thrust sense, occurred between ca 1580 and 1560 Ma, resulting in significant exhumation of marginal domains of the Gawler Craton to the north of the Karari Shear Zone. A final episode of largely strike-slip shear-zone movement occurred at ca 1450 Ma.  相似文献   

11.
Carboniferous‐Permian volcanic complexes and isolated patches of Upper Jurassic — Lower Cretaceous sedimentary units provide a means to qualitatively assess the exhumation history of the Georgetown Inlier since ca 350 Ma. However, it is difficult to quantify its exhumation and tectonic history for earlier times. Thermochronological methods provide a means for assessing this problem. Biotite and alkali feldspar 40Ar/39Ar and apatite fission track data from the inlier record a protracted and non‐linear cooling history since ca 750 Ma. 40Ar/39Ar ages vary from 380 to 735 Ma, apatite fission track ages vary between 132 and 258 Ma and mean track lengths vary between 10.89 and 13.11 μm. These results record up to four periods of localised accelerated cooling within the temperature range of ~320–60°C and up to ~14 km of crustal exhumation in parts of the inlier since the Neoproterozoic, depending on how the geotherm varied with time. Accelerated cooling and exhumation rates (0.19–0.05 km/106 years) are observed to have occurred during the Devonian, late Carboniferous‐Permian and mid‐Cretaceous — Holocene periods. A more poorly defined Neoproterozoic cooling event was possibly a response to the separation of Laurentia and Gondwana. The inlier may also have been reactivated in response to Delamerian‐age orogenesis. The Late Palaeozoic events were associated with tectonic accretion of terranes east of the Proterozoic basement. Post mid‐Cretaceous exhumation may be a far‐field response to extensional tectonism at the southern and eastern margins of the Australian plate. The spatial variation in data from the present‐day erosion surface suggests small‐scale fault‐bounded blocks experienced variable cooling histories. This is attributed to vertical displacement of up to ~2 km on faults, including sections of the Delaney Fault, during Late Palaeozoic and mid‐Cretaceous times.  相似文献   

12.
Abstract The Protogine Zone comprises a system of anastomosing deformation zones which approximately parallel the eastern boundary of the Sveconorwegian (1200–900 Ma) province in south-west Sweden. Ages of granulite facies metamorphism in the Sveconorwegian province require exhumation from c . 30 to 35 km crustal depths after 920–880 Ma. 40Ar/39 Ar cooling ages are presented for muscovite from high-alumina rocks formed by hydrothermal leaching associated with the Protogine Zone. Growth of fabric-defining minerals was associated with a ductile deformational event; muscovite from these rocks cooled below argon retention temperatures ( c . 375 ± 25° C) at c . 965–955 Ma. Muscovite from granofels in zones of intense alteration indicates that temperatures > 375 ± 25° C were maintained until c . 940 Ma. Textural relations of Al2SiO5 polymorphs and chloritoid suggest that dated fabrics formed during exhumation. The process of exhumation, brittle overprint on ductile structures and hydrothermal activity along faults within the Protogine Zone tentatively are interpreted as the peripheral effects of initial Neoproterozoic exhumation of the granulite region of south-western Sweden.
Muscovite in phyllonites associated with the 'Sveconorwegian thrust system'cooled below argon retention temperatures at c . 927 Ma. Exhumation associated with this cooling could have been related to extension and onset of brittle-ductile deformation superimposed on Sveconorwegian contraction.  相似文献   

13.
Gangdese batholith in the southern Lhasa block is a key location for exploring the Tibetan Plateau uplift and exhumation history. We present the new low-temperature thermochronological data from two north–south traverses in the central Gangdese batholith to reveal their cooling histories and corresponding controls. Zircon fission track ages show prominent clusters ranging from 23.7 to 51.6 Ma, apatite fission track ages from 9.4 to 36.9 Ma, apatite (U–Th)/He ages between 9.5 and 12.3 Ma, and one zircon (U–Th)/He age around 77.8 Ma. These new data and thermal modeling, in combination with the regional geological data, suggest that the distinct parts of Gangdese batholith underwent different cooling histories resulted from various dynamic mechanisms. The Late Eocene–Early Oligocene exhumation of northern Gangdese batholith, coeval with the magmatic gap, might be triggered by crust thickening followed by the breakoff of Neotethyan slab, while this stage of exhumation in southern Gangdese batholith cannot be clearly elucidated probably because the most of plutonic rocks with the information of this cooling event were eroded away. Since then, the northern Gangdese batholith experienced a slow and stable exhumation, while the southern Gangdese batholith underwent two more stages of exhumation. The Late Oligocene–Early Miocene rapid cooling might be a response to denudation caused by the Gangdese Thrust or related to the regional uplift and exhumation in extensional background. By the early Miocene, the rapid exhumation was associated with localized river incision or intensification of Asian monsoon, or north–south normal fault.  相似文献   

14.
Field investigation and seismic section explanation showed that the Longmen Mountain Thrust Belt has obvious differential deformation: zonation, segmentation and stratification. Zonation means that, from NW to NE, the Longmen Mountain Thrust Belt can be divided into the Songpan-Garzê Tectonic Belt, ductile deformation belt, base involved thrust belt, frontal fold-thrust belt, and foreland depression. Segmentation means that it can be divided into five segments from north to south: the northern segment, the Anxian Transfer Zone, the center segment, the Guanxian Transfer Zone and the southern segment. Stratification means that the detachment layers partition the structural styles in profile. The detachment layers in the Longmen Mountain Thrust Belt can be classified into three categories: the deep-level detachment layers, including the crust-mantle system detachment layer, intracrustal detachment layer, and Presinian system basal detachment layer; the middle-level detachment layers, including Cambrian-Ordovician detachment layer, Silurian detachment layer, etc.; and shallow-level detachment layers, including Upper Triassic Xujiahe Formation detachment layer and the Jurassic detachment layers. The multi-level detachment layers have a very important effect on the shaping and evolution of Longmen Mountain Thrust Belt.  相似文献   

15.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

16.
The Lüliang Mountains, located in the North China Craton, is a relatively stable block, but it has experienced uplift and denudation since the late Mesozoic. We hence aim to explore its time and rate of the exhumation by the fission-track method. The results show that, no matter what type rocks are, the pooled ages of zircon and apatite fission-track range from 60.0 to 93.7 Ma and 28.6 to 43.3 Ma, respectively; all of the apatite fission-track length distributions are unimodal and yield a mean length of ~13?μm; and the thermal history modeling results based on apatite fission-track data indicate that the time-temperature paths exhibit similar patterns and the cooling has been accelerated for each sample since the Pliocene (c.5 Ma). Therefore, we can conclude that a successive cooling, probably involving two slow (during c.75-35 Ma and 35-5 Ma) and one rapid (during c.5 Ma-0 Ma) cooling, has occurred through the exhumation of the Lüliang Mountains since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation may be the resultant effect from the surrounding plate interactions, and it has been accelerated since c.5 Ma predominantly due to the India-Eurasia collision.  相似文献   

17.
龙门山南段构造变形及应力序列   总被引:2,自引:2,他引:0  
2008年5月12日的汶川大地震表明龙门山断裂带仍然是一个构造活动带,为达到防震减灾的目的,对龙门山进行深入研究显得非常必要。作者通过龙门山南段的怀远和雅安两条实测构造地质剖面,应用传统的构造解析法,结合构造带的分带讨论思想,对野外实测的褶皱、节理和断层等构造变形要素进行综合分析,确定出各构造带的变形和应力序列。中央断裂带构造变形次数达10次以上,其中以NW-SE向逆冲最多,部分为左旋逆冲或右旋逆冲。滑覆体构造变形序列达5次左右。前山断裂带的构造变形序列较少,约5次以上。  相似文献   

18.
在区域地质构造研究中,龙门山断裂带也称为龙门山褶皱-冲断带或推覆构造带。许多研究者认为,2008年汶川8级地震的发震构造是这条断裂带或其中央映秀—北川断裂。笔者在深入分析龙门山断裂带的构造演化和岩石圈结构构造特征的基础上,着重探讨8级地震的发震构造,提出不同的认识。龙门山断裂带经历了松潘—甘孜造山带的前陆褶皱-冲断带(T3-J)、造山带(K-E)和青藏高原边缘隆起带(N-Q)3个动力学条件不同的演化阶段,在前两个阶段断裂带递进发展,第三阶段断裂带则被改造。从三维空间看,龙门山断裂带位于松潘—甘孜地块东南缘的上地壳内,并被推覆到扬子陆块上;而松潘—甘孜地块的中—下地壳和岩石圈地幔发生韧性增厚,而且向扬子陆块壳下俯冲,从而使浅、深部构造在垂向上形成"吞噬"扬子地块的"鳄鱼嘴"式结构。虽然在平面上汶川8级地震的主余震分布与映秀—北川断裂一致,但从剖面上看其震源所构成的震源破裂体位于龙门山断裂带之下的扬子陆块内。这种不一致性表明,8级地震的发震构造不是龙门山断裂带,而是扬子陆块内新生的高角度断裂,其走向基本与龙门山断裂带一致。推测这一震源断裂的形成过程是:当松潘—甘孜地块向东南推挤时,其前缘"鳄鱼嘴"构造咬合并错断被吞噬的扬子陆块部分,形成具有右旋逆平移性质的新断裂,导致汶川8级地震的发生。  相似文献   

19.
New field data integrated by fission‐track (FT) analysis unravel an innovative scenario for the post‐Variscan evolution of the eastern Anti‐Atlas. This area, unaffected by Meso‐Cenozoic tectonics according to most workers, is crosscut by crustal faults bearing evidence of a polyphase deformation history. Apatite FT ages, ranging between 284 and 88 Ma, point to fast Neogene exhumation and unravel contrasting cooling paths across major faults. Results show that the study area was buried beneath 2 km of allochthonous Variscan units, now eroded. The eastern Anti‐Atlas acted as the southern shoulder of the Atlasic rift in the Mesozoic, and underwent a dextral transpressional structuring of Neogene age followed by sub‐meridian shortening. The southern front of Atlasic deformation is therefore located inside the Anti‐Atlas region, and it is still active.  相似文献   

20.
《地学前缘(英文版)》2019,10(6):2153-2166
The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB) at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT) data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma) cooling and a more prominent record of(late) Early Cretaceous(~150-110 Ma) cooling.The apatite(U-Th)/He age results are consistent with the(late) Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号