首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Kopet-Dagh basin of northeastern Iran was formed during the Middle Triassic orogeny. From Jurassic through Miocene time, sedimentation was relatively continuous in this basin. The Shurijeh Formation (Neocomian), which consists of red bed siliciclastic sediments that were deposited in fluvial depositional settings, crops out in the southeastern part of the Kopet-Dagh basin. In addition to clastic lithofacies, non-clastic facies in the form of calcrete paleosols, were identified in this formation. The calcrete host rocks are mainly sandstone, pebbly sandstone. The calcrete in middle unit in the Shurijeh Formation consists of, from bottom to top: incipient calcrete, nodular calcrete, massive calcrete horizons. The maturity pattern of these calcrete gradationally increases from bottom to top in this unit. Lack of organo-sedimentary structure (mainly plant roots), diversity of calcite fabric, suggest that the studied calcretes have a multi-phase development: a short vadose phase followed by a long phreatic phase. These calcretes are neither pedogenic nor groundwater calcretes. Petrographic studies show that they are composed of micritic textures with a variety of calcite fabrics, microsparitic/sparitic veins, displacive, replacive fabrics, quartz, hematite grains. Cathodoluminescence images, trace elemental analysis (Fe, Mn increased, Na, Sr decreased) of calcrete samples show the effects of meteoric waters during the calcrete formation when water tables were variable. In this study, we conclude that evaporation, degassing of carbon dioxide are the two main factors in the formation of non-pedogenic or groundwater calcrete. The sources of carbonate were probably parent materials, surface waters, ground waters, eolian dusts, numerous outcrops of limestones that have been exposed in the source area during Neocomian time.  相似文献   

2.
The Yalgorup Plain of southwestern Australia is underlain by two limestone formations and a linear quartz-sand formation containing limestone lenses. These limestones record carbonate deposition in seagrass banks during the Pleistocene; they are capped either by a prograding beach-ridge system of small cuspate forelands or a quartz-rich shore-parallel coastal barrier. The cuspate forelands formed behind protective offshore limestone reefs within a given Pleistocene wind-and-wave field, while the quartz-rich coastal dune barrier formed under enhanced swell conditions. These formations record three different Pleistocene interglacial depositional events, separated by unconformities, each linked to a distinct climate and mean sea level. Foraminiferal assemblages within the two limestones and within the limestone lenses of the quartz-sand formation faithfully record changes in minimum seawater temperature, reflecting these changes in climate. They indicate a cycle of warm–cool–warm water accumulation of carbonates. Such a record of both climate and sea level history for southwestern Australia is unique, contributing greatly to the Pleistocene coastal sedimentary history of limestones within southwestern Australia. These formations occur within the globally unique setting of Western Australia and are conserved within a National Park and represent an outstanding record of Quaternary coastal geomorphic development in terms of both carbonate and siliciclastic sedimentation linked to both climate and sea level changes. Given their array of lithofacies, environmental setting, sea level and climate changes, as well as their biostratigraphy reflecting these changes, these formations form a sedimentary ‘package’ that is of global geoheritage significance, with many of its inherent geological features also of global to national geoheritage significance.  相似文献   

3.
In the long continental history of the Provence Basin which extended from Santonian to Oligocene times, a major period of palaeosol development occurred in the Danian. Dolocretes developed within floodplain silts, and partly from palustrine limestones. Dolocretes are overlain by pedogenic facies: calcretes and palustrine limestones. Gradational lower and upper limits of profiles, succession of nodular, coalescent and massive horizons, the epigenesis of quartz by dolomite, the unimodal crystal size and the euhedral dolomite fabric, as well as the absence of biogenic structures and vadose cements show that dolocretes formed in the phreatic zone. The exclusive occurrence of dolocretes around the palaeolake or playa suggests that dolocrete formed by the mixing of groundwaters and lake brines, which infiltrated the phreatic zone during periods of strong evaporation and lake level lowering. The term halo dolocrete is proposed to describe this type of dolocrete deposit. Subsequent alteration of the dolocrete includes leaching of the central core of dolomite crystals and calcitization. Calcitization was either fabric-destructive (type I) or fabric-preserving (type II) and took place during very early diagenesis, i.e. concomitant with calcrete formation or palustrine limestone deposition. Fabric-destructive calcitization is attributed to a drop in the lake level, when the upper part of the dolocrete was subjected to vadose zone processes, whereas the fabric-preserving calcitization resulted from reactions with dilute lake and groundwaters during rise in lake level.  相似文献   

4.
Sedimentologic and petrographic analyses of outcroping and subsurface calcretes, palustrine carbonates, and silcretes were carried out in the southern Paraná Basin (Uruguay). The aim of this work is to describe the microfabric and interpret the genesis of these rocks through detailed analyses, since they contain significant paleoenvironmental and paleoclimatic evolution information.The main calcrete and silcrete host rock (Mercedes Formation) is represented by a fluvial thinning upward succession of conglomerate and sandstone deposits, with isolated pelitic intervals and paleosoils. Most of the studied calcretes are macroscopically massive with micromorphological features of alpha fabric, originated by displacive growth of calcite in the host clastic material due to evaporation, evapotranspiration and degassing. Micromorphologically, calcretes indicate an origin in the vadose and phreatic diagenetic environments. Micrite is the principal component, and speaks of rapid precipitation in the vadose zone from supersaturated solutions. The abundance of microsparite and secondary sparite is regarded as the result of dissolution and reprecipitation processes.Although present, brecciated calcretes are less common. They are frequent in vadose diagenetic environments, where the alternation between cementation and non-tectonic fracturing conditions take place. These processes generated episodes of fragmentation, brecciation and cementation. Fissures are filled with clear primary sparitic calcite, formed by precipitation of extremely supersaturated solutions in a phreatic diagenetic environment. The micromorphological characteristics indicate that calcretes resulted from carbonate precipitation in the upper part of the groundwater table and the vadose zone, continuously nourished by lateral migration of groundwater.The scarcity of biogenic structures suggests that they were either formed in zones of little biological activity or that the overimposed processes related to water table fluctuations produced intense recrystallization completely obliterating the biogenic fabric.Limestone beds containing terrestrial gastropods are geographically restricted. Situated at the top of the calcrete successions, they exhibit brecciated and peloidal-intraclastic textures but lack lamination, edaphic structures, aggregates and vertical rhizoliths. This indicates they correspond to low-energy palustrine deposits, generated in shallow, local and ephemeral ponds developed in topographic depressions. When water table levels dropped, the palustrine deposits were exposed. This favours the presence of terrestrial gastropods, seeds and insect nests. The combination of calcretes and palustrine carbonates indicates periods and areas with a reduced clastic input and a predominantly semiarid climate, with well-defined humid and dry seasons.Characteristics of the later developed massive and nodular horizons of silcretes, such as, preservation of the internal structure of the host rock, the small areal extent, the formation of massive lenses, the complex pore infillings and the lack of a columnar upper section, indicate that they were generated from groundwaters. Every silcretized horizon shows different positions of the groundwater table and relates to the dissection of landscape.The age of calcretization and silcretization is bracketed between the Late Cretaceous (Campanian–Maastrichtian) and the Early Eocene. Paleoclimate indicates changing conditions from warm and humid at the end of the Cretaceous (Mercedes Formation) to semiarid and seasonal during Paleocene (groundwater calcretes and palustrine deposits) and subtropical and seasonal in the early Eocene (Asencio Formation).  相似文献   

5.
Tectono-stratigraphic models of foredeep sedimentation have generally presumed a direct link between changing rates of tectonism and concomitant sedimentological response as manifested by change in thickness, composition or depositional environment of sediment accumulating in adjacent basins. Lacustrine limestone units within the early Cretaceous fluvial/lacustrine Gannett Group of western Wyoming exhibit systematic variation in several geochemical proxies of relative rates of precipitation and evaporation, indicating that lakewater chemistry was controlled by variation in regional climate. Change in proportion of allochthonous terrigenous clastic vs. autochthonous carbonate deposition, as well as carbonate Mg/Ca ratio and stable isotopic composition, occurs at two scales. Metre-scale alternation of micritic limestone and argillaceous marl is accompanied by mineralogical and isotopic variation within individual beds, indicating preferential carbonate accumulation during intervals of decreased regional meteoric precipitation relative to lake-surface evaporation. Limestone deposition began during intervals of maximum aridity, and decreased as increased meteoric precipitation-driven flux of terrigenous clastic sediment overwhelmed sites of carbonate accumulation. Similar upsection variation in limestone mineralogy and isotopic composition at a scale of tens of metres reflects the multiple processes of long-term increase in meteoric precipitation and lakewater freshening prior to influx of terrigenous sediment, across-basin fluvial-deltaic progradation, and renewed accumulation of riverine terrigenous units. Such trends suggest that formation-scale alternation between fluvial clastic and lacustrine carbonate deposition was controlled by climate change.  相似文献   

6.
The Ordovician Daylesford Limestone at Bowan Park and the Fossil Hill Limestone at Cliefden Caves have diagenetic and pedogenic features of microkarst, paleosols and calcrete associated with subaerial disconformities in their stratigraphic sequences, all of which, as an ensemble, have global geoheritage significance. The original shelly limestones, lime mudstones, and coralline limestones have selectively dissolved to form vugular limestone whose cavities have filled with sparry calcite and/or crystal silt. The limestones also have been calcretised to develop massive and laminar calcrete and calcrete ooids. Below disconformity surfaces are bleached limestone, crystal-silt and spar-filled fossil moulds and enlarged moulds, micro-breccia-filled moulds and fissures filled with crystal silt, calcrete pellets and calcrete ooids. The disconformity surfaces are irregular or undulating interfaces between lithologies, fissures and fissure-fills, and calcrete. Above disconformities there are limestone lithoclasts, remanié fossils, calcreted limestone, veined limestone, calcrete ooids, laminated calcrete, lithoclast grainstone, or calcrete-ooid grainstone, and lithoclasts with fossils moulds filled with crystal silt and/or spar. The lithological, stratigraphic and possibly landscape differences, make the subaerial diagenesis/pedogenesis in the Daylesford Limestone subtly different to that of the Fossil Hill Limestone. Subaerial disconformities and associated diagenesis/pedogenesis, as recorded in these formations, are not widely reported globally nor well represented in Ordovician limestones. The microkarst features provide insights into the types of subaerial diagenesis/pedogenesis during the Ordovician and into climate, landscape setting, paleohydrology, and groundwater/rainwater alkalinity. Consequently, the story of the Ordovician microkarst, paleosols and calcrete ooids is unique and globally of geoheritage significance as examples of subaerial alteration in an ancient high-rainfall, tropical climate volcanic island environment in a tectonically active region.  相似文献   

7.
A marginal marine carbonate environment, giving away to an alluvial one, was established during Messinian time on Alonnisos Island, the footwall upland of the Southern Marginal Fault of the Sporades Basin (SMFS). Analysis of the evolving depositional systems, with emphasis on their sedimentation processes, faulting patterns and palaeopedological factors, has permitted an interpretation of the simultaneous controls of tectonism and climate. The carbonate sediments were deposited in a shallow marine environment formed along a faulted continental margin under warm and semi-arid climatic conditions. Faulting consisted of NE-trending dextral reverse faults and NW-trending strike slip faults, produced by WNW-directed compression. The basement structural elements affected the spatial distribution of the offshore and shoreface facies, whereas fifth-order cycles of sea-level change were responsible for the development of metre-scale, shallowing-up cycles. The compressional structures were subsequently reactivated by NNE extension. This tectonic inversion, together with a global sea-level fall, triggered alluvial fan sedimentation. Fan sedimentation was disrupted by long periods of non-deposition and soil formation under warm climatic conditions. Three distinct units are recognized in the fan: a lower unit consisting of clast-poor debris flows, attributed to semi-arid–humid periods; an intermediate unit of clast-rich sheetfloods and channel flows, deposited during arid periods; and an upper unit consisting of matrix-rich sheetfloods related to a return to semi-arid–humid conditions. We interpret that the water-flow processes responsible for deposition were most prevalent on fans of arid and semi-arid climates, whereas debris-flow processes were more typical of climates with higher rainfall. As the extension proceeded during the Plio-Quaternary time, the main tectonic activity of the Sporades Basin was taken up by the SMFS causing significant footwall uplift. Due to this process, Alonnisos Island was elevated above the Pliocene highstand and became an area starved of Quaternary sedimentation. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
近年来,对冲积扇复杂沉积机制与沉积过程的研究受到关注,取得了较大进展。从冲积扇的分类及其沉积特点、冲积扇沉积储层构型表征方法及冲积扇沉积机制等方面对冲积扇研究现状进行了详细综述。之后,针对碎屑流与辫状河共同控制下冲积扇水道演化机制不明的情况,利用水槽沉积模拟对冲积扇过程进行了沉积实验模拟。研究表明,冲积扇具有多种分类方案,反映了冲积扇的多样性和复杂性;冲积扇表征技术主要有现代沉积、野外露头、地下密井网解剖和水槽沉积实验模拟等方法;控制冲积扇发育的异旋回因素主要有:构造差异活动、同生断层的组合样式及物源气候的变化等;自旋回因素控制下冲积扇存在多种沉积机制,其决定了冲积扇内部构型单元的分布。通过水槽沉积模拟实验研究发现,对碎屑流与辫状河共同控制下冲积扇沉积过程具有如下特点:①在扇体初始雏形形成后,水携沉积物具有向扇面低势部位堆积的趋势;②扇面辫状水道存在两种重要的迁移方式,单一主水道迁移和分叉式次水道迁移方式。单一主水道的迁移是导致扇体辐向前积增大的主要原因,而分叉式次水道迁移方式是扇体展宽的重要机制;③在构造条件相对稳定的情况下,多期扇体具有明显向源退积的特征。在前述研究基础上,探讨了下一步冲积扇的研究方向。  相似文献   

9.
Alluvial fans and shallow carbonate lakes interfered in the Teruel half‐graben during the Late Miocene–Pliocene. Tectonic influence is recorded in alluvial and lacustrine–palustrine successions, with long‐term climate changes being recorded in detail in the isotopic signatures of carbonates. Episodes of tectonic activity induced alluvial fan progradation and lake retraction in the whole basin. Three lacustrine stages have been identified, which support the idea that climate also exerted an important control on sedimentation. The transition between stages 1 and 2 occurred during a tectonically calm episode due to an increase in aridity in the Early Turolian; small fans with source areas next to the lake margin prograded, inducing lake‐shore retraction. The transition from stage 2 to 3 was caused by the superimposition of increasing tectonic activity and aridity effects. Our study demonstrates that discrimination of allogenic factors controlling sedimentation in continental closed basins is possible using sequence stratigraphy in combination with other techniques such as geochemistry of carbonates.  相似文献   

10.
Ana M. 《Earth》2003,60(3-4):261-298
Interest in palustrine carbonates and calcretes has increased over the last 20 years since they contain significant environmental information. Much of the work performed in this area has focused on either of two types of terrestrial carbonate—palustrine carbonates or calcretes (pedogenic and groundwater)—yet their simultaneous study shows there may be a gradual transition from one form to the other, revealing the interplay between pedogenic, sedimentary, and diagenetic processes. Three main factors control the formation of these carbonates: the position of the water table, the host rock, and the period of sub-aerial exposure. In pedogenic calcretes, precipitation of carbonate takes places mostly in the vadose zone above the water table, and within a previous host rock or sediment. In groundwater calcretes, the precipitation of carbonate also occurs within a previous host rock and around the groundwater table. In palustrine carbonates, however, the precipitation of lime mud occurs in a lacustrine water body. Palustrine carbonates necessarily form on previous lacustrine mud, whereas both types of calcretes may form on any type of sediment or soil. The sub-aerial exposure time needed to form palustrine carbonates may by relatively short (even a season), whereas pedogenic calcretes need more time (several years to millions of years). Groundwater calcretes do not form on the topographic surfaces, so there is no need of sub-aerial exposure. However, stable surfaces favour the development of thick groundwater calcretes. Small fluctuations in the water table cause gradual transitions of these three types of terrestrial carbonates and the subsequent mixture of their characteristic features, causing difficulties in the interpretation of these carbonates.

The formation of these carbonates is controlled by palaeoenvironmental factors. Both commonly form in semi-arid climates. Arid climates are also suitable for calcretes, but sub-humid conditions are more suitable for palustrine carbonates. More indications of climatic conditions may be obtained through the analysis of the δ18O content of both calcretes and palustrine carbonates, and from the depth of the horizon containing carbonate nodules in pedogenic calcretes. Vegetation is also important in the formation of these types of carbonates. Data on the prevailing vegetation can be obtained from the analysis of the micro and macrofabric as well as from the δ13C signal of the primary carbonates, which, in pedogenic carbonates, has also been used to estimate atmospheric pCO2 during the Phanerozoic. These terrestrial carbonates are widely distributed on floodplains and distal areas of alluvial basins. Their presence and characteristics can be used as indicators of aggradation, subsidence or accommodation rates, and therefore as indicators of different tectonic regimes.

Even though the study of these carbonates has notably increased in recent years, much less is known about them than about marine carbonates. Presently, there is much emphasis on obtaining a general model for sequence stratigraphy in terrestrial basins, with a need to include the carbonates analysed in this paper.  相似文献   


11.
《Gondwana Research》2002,5(3):683-699
The early Carboniferous sedimentation of the Tethyan Margin of Gondwana in the Kashmir Himalaya represents alternating siliciclastic - carbonate succession consisting of distinct stratigraphic sequences which are bounded by discontinuities. The discontinuities in the sedimentation are related to environmental changes in the form of subaerial exposure, subaqueous erosion, subaqueous omission or changes in texture and facies. These distinct surface zones or time significant boundaries can be correlated across the depositional platform. Low stand, high stand and transgressive sedimentation units in the lower and middle parts of early Carboniferous Syringothyris Limestone Formation in Banihal area have been recognised. This is explained by superposition of high frequency and low amplitude sea level fluctuations on a large-scale trend under greenhouse conditions during the early Carboniferous period. The facies associations present in the early Carboniferous succession of the Himalaya broadly represent intertidal (peritidal), shallow subtidal, deeper subtidal, off-shore-slope and deeper environments. Discontinuities that are interpreted as progradational, retrogradational and aggradational phases of sedimentation bound these facies associations. This formation represents continental margin depositional setting which is authenticated by deposition of siliciclastic sediments. This marginal depositional setting is greatly affected by numerous dynamic processes including tectonic and other active sea as well as continental processes. The records of all those processes in this formation reflect the eustatic changes in sea level. These periodic eustatic changes have generated the various discontinuities, stratigraphic sequences or systems tracts. Overall it appears that interplay of many processes such as sediment supply, thermal and tectonic activity, eustatic and climatic changes in the Kashmir Tethyan depositional basin generated these distinct depositional sequences during the early Carboniferous period.  相似文献   

12.
The Miocene alluvial-lacustrine sequences of the Madrid Basin, Spain, formed in highly varied landscapes. The presence of various types of palaeosols allows assessment of the effects of local and external factors on sedimentation, pedogenesis and geomorphological development. In the northern, more arid, tectonically active area, soils were weakly developed in aggrading alluvial fans, dominated by mass flows, reflecting high sedimentation rates. In more distal parts of the fans and in playa lakes calcretes and dolocretes developed; the former were associated with Mg-poor fan sediments while the latter formed on Mg-rich lake clays exposed during minor lake lowstands. The north-east part of the basin had a less arid climate. Alluvial fans in this area were dominated by stream flood deposits, sourced by carbonate terrains. Floodplain and freshwater lake deposits formed in distal areas. The high local supply of calcium carbonate may have contributed to the preferential development of calcretes on the fans. Both the fan and floodplain palaeosols exhibit pedofacies relationships and more mature soils developed in settings more distant from the sediment sources. Palaeosols also developed on pond and lake margin carbonates, and led to the formation of palustrine limestones. The spatial distributions and stratigraphies of palaeosols in the Madrid Basin alluvial fans suggest that soil formation was controlled by local factors. These palaeosols differ from those seen in Quaternary fans, which are characterized by climatically induced periods of stability and instability.  相似文献   

13.
Glacial gravels of Late Devensian Dimlington Stadial age (26 000–13 000 years BP) at West Tanfield, North Yorkshire, England, have been cemented by carbonate-rich solutions to produce a strongly indurated calcrete horizon. The low-Mg cements occur as drusy spar, needle fibres, alveolar septal structures, micrite and micropinnacles, indicative of vadose-zone cementation. Some complex pore partition structures attributed to precipitation along meniscus films also occur. These partitions separate air-dominated and water-dominated microenvironments of the vadose zone. The abundance of vadose fabrics shows that the accumulation is not a groundwater calcrete. In addition, much of the carbonate appears to have been precipitated by biological mediation. Carbon and oxygen isotopic data suggest that the carbonate did not form as a result of freezing, as has been suggested for some ‘arctic’soil carbonates. The pollen history of the area since the Devensian suggests that this calcrete precipitated at low temperatures; this contrasts with widely reported occurrences of calcrete in soils of hot arid or semi-arid regions, and suggests that palaeo-calcretes should not be used as absolute palaeoclimatic indicators. The unusual occurrence, albeit localized, of a thick calcrete under a cool and wet climate probably reflects the well-drained nature of the gravels, the abundance of CaCO3 as limestone clasts in the gravel and a high degree of biological activity beneath a forest cover, which created a local environment favouring carbonate precipitation.  相似文献   

14.
《Quaternary Science Reviews》2007,26(22-24):2913-2923
This paper provides sedimentological details of the Salto depositional sequence of western Uruguay, which includes the Salto and the Bellaco Formations. These units are interpreted as evidence, in the Uruguayan landscape, of a Pleistocene forebear of the Uruguay River. The Salto depositional sequence, encompasses two depositional cycles: (a) the lower cycle, represented only by the Salto Formation, with conglomeratic sandstones and sandstones intercalated with pelites and fine sandstones; and (b) the upper cycle, represented by the Salto Formation and the Bellaco Formation, characterized by conglomerates and conglomeratic sandstones with horizontal stratification, discontinuous silicified sandy levels and gypsum–clay bodies. The Salto sequence is characterized by braided river deposits, genetically associated with lacustrine or palustrine and possible aeolian sediments. Cyclic alternations of channelized tractive currents and interchannel contexts are indicated. A possible Pleistocene age for the Salto Formation is discussed, in the light of new and preliminary information (thermoluminescence ages) from the lower cycle. There are several lines of evidence indicating semi-arid conditions during the ‘Salto event’. Comments on regional correlation are provided, as well as the effects of neotectonic processes.  相似文献   

15.
M. Fuchs   《Quaternary Research》2007,67(3):349-356
Soil erosion is a natural geomorphological process, which can be triggered by both natural (climate, tectonics, or both) and anthropogenic (e.g., agriculture) perturbation of the ecosystem. Evidence has accrued that the Holocene climate experienced large fluctuations in amplitude and suggestions of human impact on the ecosystem provided by the Neolithic revolution dating back to the early Holocene have been made. The question of whether man or climate was the dominant factor responsible for Holocene soil erosion remains unresolved. To resolve the reasons for Holocene sediment redistribution, high-resolution chronometric data on sediments derived from colluvial and alluvial archives from southern Greece were obtained and combined with available archaeological and paleoclimatic data from the eastern Mediterranean. These data show a significant correlation between sedimentation rates and settlement history. Climatic fluctuations are only weakly correlated with sedimentation history. The results show high sedimentation rates during the Early Neolithic (7th millennium BC) in southern Greece, suggesting that Holocene soil erosion was triggered by human activity and then amplified by enhanced precipitation. This would explain the high sedimentation rates during the Early Neolithic in connection with enhanced precipitation in the eastern Mediterranean, which continued until the mid-Holocene.  相似文献   

16.
To understand the depositional processes and environmental changes during the initial flooding of the North China Platform, this study focuses on the Lower to Middle Cambrian Zhushadong and Mantou formations in Shandong Province, China. The succession in the Jinan and Laiwu areas comprises mixed carbonate and siliciclastic deposits composed of limestone, dolostone, stromatolite, thrombolite, purple and grey mudstone, and sandstone. A detailed sedimentary facies analysis of seven well‐exposed sections suggests that five facies associations are the result of an intercalation of carbonate and siliciclastic depositional environments, including local alluvial fans, shallowing‐upward carbonate–siliciclastic peritidal cycles, oolite dominant shoals, shoreface and lagoonal environments. These facies associations successively show a transition from an initially inundated tide‐dominated carbonate platform to a wave‐dominated shallow marine environment. In particular, the peritidal sediments were deposited during a large number of depositional cycles. These sediments consist of lime mudstone, dolomite, stromatolite and purple and grey mudstones. These shallowing‐upward cycles generally resulted from carbonate production in response to an increase of accommodation during rising sea‐level. The carbonate production was, however, interrupted by frequent siliciclastic input from the adjacent emergent archipelago. The depositional cycles thus formed under the influence of both autogenetic changes, including sediment supply from the archipelago, and allogenic control of relative sea‐level rise in the carbonate factory. A low‐relief archipelago with an active tidal regime allowed the development of tide‐dominated siliciclastic and carbonate environments on the vast platform. Siliciclastic input to these tidal environments terminated when most of the archipelago became submerged due to a rapid rise in sea‐level. This study provides insights on how a vast Cambrian carbonate platform maintained synchronous sedimentation under a tidal regime, forming distinct cycles of mixed carbonates and siliciclastics as the system kept up with rising relative sea‐level during the early stage of basin development in the North China Platform.  相似文献   

17.
Interaction of metalliferous continental brines with biogenic sulphide is the basis of some syngenetic and early diagenetic models for the formation of Cu‐(Pb‐Zn) sulphides during a depositional cycle of carbonates in restricted marine environments. A variation of these models (an ‘evaporative concentration‐lateral groundwater flow’ model) is proposed, using hydrological, geochemical and biological data from low metal, but otherwise pertinent redbed‐associated, sabkha, tidal flat and subtidal environments at Nilemah Embayment, in Hamelin Pool (Shark Bay, Western Australia).

The model is constrained by: (i) the short time available for ore accumulation during a single depositional cycle; (ii) limitation of adequate rates of bacterial sulphate reduction for the formation of an ore deposit to near‐surface sediments; (iii) restriction of the most favourable ore‐forming sites to the intertidal zone and the littoral shelf; (iv) coincidence in these sites of laterally‐flowing marine/meteoric groundwater brine, and mosaics of in situ cyanobacterial mats and shallow erosional depressions containing detrital organic matter eroded from the mats. Under these conditions the metalliferous fluid would have to contain about 1000 ppm Cu and flow for 1000 years at a rate of 5 m/a through the intertidal/littoral shelf environment to produce an ore deposit.

Critical features of a model that could generate this combination of very high metal concentrations and flow rates are: (i) a highly permeable unconfined aquifer system comprising alluvial fans at the base of basaltic mountain ranges and continental redbeds beneath a broad coastal plain; (ii) mobilization, concentration and transport of the metals in this aquifer to intertidal/littoral shelf sites of ore deposition; (iii) effective concentration processes in the aquifer, involving evaporation and reflux of brines in groundwater discharge areas on the coastal plain and evaporation in marine‐continental and marine sabkhas bordering the sites of deposition; (iv) rapid lateral groundwater flow of the concentrated metalliferous brines under a strong seawards‐directed hydraulic gradient; and (v) discharge of the metalliferous brines into or through topographic depressions generated by erosion and shoaling in the peritidal and littoral shelf environments.

The model hydrodynamic processes and their magnitude are within the range observed in modern environments but they are most likely to be effective in coarse‐grained, topographically irregular carbonate sabkhas and tidal flats, which usually form under high‐energy conditions. Even under these conditions, the individual ore‐forming processes must combine in an optimum manner before the highly demanding metal concentrations and flow rates required for ore formation in a single marine depositional cycle can be met.  相似文献   

18.
Research concerning chemical constitution of alluvial sediments was done in the lower course of the Obra river (Western Poland). The fragment of vertical profile, which consisted of various alluvial sediments (fine sands, peats, and sandy silts) was chosen for detailed analysis. The main research problem was to determine if lithology and chemical constitution of alluvial deposits are interconnected in a distinct way within studied section of the Obra river valley, and, if changes of chemical elements’ concentration could be used to illustrate depositional processes, which take place in riverbed and floodplain. Concentrations of Fe, Mn, Cu, Zn, Ca, Mg, and K were determined in collected sediment samples. Next, geochemical groups of alluvial sediments were distinguished using cluster analysis. Investigated changes of chemical elements’ concentration show that there is a distinct border between the environment of organic sediments, which marks the place of former functioning of the Obra riverbed, and sandy silts, which were deposited within floodplain during floods. Besides, floodplain sediments, riverbed sediments, and reductive environment within peat deposits were singled out on the basis of the analysis.  相似文献   

19.
Detailed information on semi‐arid, palustrine carbonate–calcrete lithofacies associations in a sheetwash‐dominated regolith setting is sparse. This is addressed by studying the Lower Limestone of the Lameta Beds, a well‐exposed Maastrichtian regolith in central India. The general vertical lithofacies assemblage for this unit comprises: (a) basal calcareous siltstones and marls with charophytes, ostracods and gastropods; (b) buff micritic limestones associated in their upper parts with calcretized fissure‐fill sandstones; (c) sheetwash as fissure‐fill diamictites and thin pebbly sheets, locally developed over a few metres; and (d) sandy, nodular, brecciated and pisolitic calcretes at the top. The sequence is ‘regressive’, with upsection filling of topographic lows by increased sheetwash. Lateral lithofacies change is marked, but there are no permanent open‐water lake deposits. In topographic lows close to the water table, marshy palustrine or groundwater calcretes formed, whereas on better drained highs, brecciation and calcretization occurred. Prolonged exposure is implied, suggesting that shrinkage was the main cause of brecciation. Evidence for rhizobrecciation and other biological calcrete fabrics is sparse, contrasting with the emphasis on root‐related brecciation in many studies of palustrine lithofacies. Stable isotope (δ18O and δ13C) values are consistent with the palustrine limestones being fed from meteoric‐derived groundwater with a strong input of soil‐zone carbon. There is overlap of both δ18O and δ13C values from the various palustrine and calcrete fabrics co‐occurring at outcrop. This suggests that, in groundwater‐supported wetlands, conversion from palustrine carbonate to calcrete need not show isotopic expression, as the groundwater source and input of soil‐zone carbon are essentially unchanged. Cretaceous–Tertiary δ18O and δ13C values from palustrine lithofacies and associated calcretes appear to be strongly influenced by the inherited values from lakes and wetlands. Hydrologically closed lakes and marine‐influenced water bodies tend to result in low negative palustrine δ18O and δ13C values. During brecciation and calcretization, the degree of isotopic inheritance depends on whether or not alteration occurs in waters that are different from those of the original water body or wetland. Marked biological activity (e.g. rhizobrecciation or root mat development) during calcretization may lower δ13C values where C3 plants are abundant but, in shrinkage‐dominated systems, δ13C values will be largely inherited from the palustrine limestones.  相似文献   

20.
Pollen was collected from modern alluvium and from the atmosphere to document the nature and amount of paleoenvironmental information reflected by alluvial pollen chronologies. Results indicate that pollen in alluvium is a homogeneous mixture derived almost entirely from the floodplain itself. The few pollen grains derived from nonfloodplain plant communities and preserved in alluvial sediments are so well mixed that their frequencies no longer reflect the geographic distribution of the specific plant communities in which they originated. In contrast, the abundance of alluvial pollen grains, derived from the major floodplain taxa (Chenopodiineae, Ambrosia type), varies with summer and winter climate. This annual variation is preserved in alluvial pollen assemblages through a combination of processes within sedimentation basins involving discontinuous deposition events and mechanical pollen degradation. The high-frequency, wide-amplitude pollen variance in alluvial pollen assemblages contrasts with the low-frequency, narrow-amplitude pollen variance in sediments of lakes and ponds. The slight geographic variance in alluvial pollen assemblages, in contrast to the large variance in soil pollen, allows use of alluvial pollen to infer climate throughout the watershed in which pollen is sampled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号