首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An assessment of regional vulnerability of rice to climate change in India   总被引:1,自引:0,他引:1  
A simulation analysis was carried out using the InfoCrop-rice model to quantify impacts and adaptation gains, as well as to identify vulnerable regions for irrigated and rain fed rice cultivation in future climates in India. Climates in A1b, A2, B1 and B2 emission scenarios as per a global climate model (MIROC3.2.HI) and a regional climate model (PRECIS) were considered for the study. On an aggregated scale, the mean of all emission scenarios indicate that climate change is likely to reduce irrigated rice yields by ~4 % in 2020 (2010–2039), ~7 % in 2050 (2040–2069), and by ~10 % in 2080 (2070–2099) climate scenarios. On the other hand, rainfed rice yields in India are likely to be reduced by ~6 % in the 2020 scenario, but in the 2050 and 2080 scenarios they are projected to decrease only marginally (<2.5 %). However, spatial variations exist for the magnitude of the impact, with some regions likely to be affected more than others. Adaptation strategies comprising agronomical management can offset negative impacts in the near future—particularly in rainfed conditions—but in the longer run, developing suitable varieties coupled with improved and efficient crop husbandry will become essential. For irrigated rice crop, genotypic and agronomic improvements will become crucial; while for rainfed conditions, improved management and additional fertilizers will be needed. Basically climate change is likely to exhibit three types of impacts on rice crop: i) regions that are adversely affected by climate change can gain in net productivity with adaptation; ii) regions that are adversely affected will still remain vulnerable despite adaptation gains; and iii) rainfed regions (with currently low rainfall) that are likely to gain due to increase in rainfall can further benefit by adaptation. Regions falling in the vulnerable category even after suggested adaptation to climate change will require more intensive, specific and innovative adaptation options. The present analysis indicates the possibility of substantial improvement in yields with efficient utilization of inputs and adoption of improved varieties.  相似文献   

2.
Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14?% of national GDP corresponding to agriculture, employment of 21?% of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80?% of crops would be impacted in more than 60?% of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation.  相似文献   

3.
India is predicted to be one of the most vulnerable agricultural regions to future climate changes. Here, we examined the sensitivity of winter cropping systems to inter-annual climate variability in a local market and subsistence-based agricultural system in central India, a data-rich validation site, in order to identify the climate parameters to which winter crops – mainly wheat and pulses in this region – might be sensitive in the future. We used satellite time-series data to quantify inter-annual variability in multiple climate parameters and in winter crop cover, agricultural census data to quantify irrigation, and field observations to identify locations for specific crop types. We developed three mixed-effect models (250 m to 1 km scale) to identify correlations between crop cover (wheat and pulses) and twenty-two climate and environmental parameters for 2001-2013. We find that winter daytime mean temperature (November–January) is the most significant factor affecting winter crops, irrespective of crop type, and is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers in similar landscapes would require additional strategies, such as access to fine-scale temperature forecasts and heat-tolerant winter crop varieties.  相似文献   

4.
Historical increases in agricultural production were achieved predominantly by large increases in agricultural productivity. Intensification of crop and livestock production also plays a key role in future projections of agricultural land use. Here, we assess and discuss projections of crop yields by global agricultural land-use and integrated assessment models. To evaluate these crop yield projections, we compare them to empirical data on attainable yields by employing a linear and plateauing continuation of observed attainable yield trends. While keeping in mind the uncertainties of attainable yields projections and not considering future climate change impacts, we find that, on average for all cereals on the global level, global projected yields by 2050 remain below the attainable yields. This is also true for future pathways with high technological progress and mitigation efforts, indicating that projected yield increases are not overly optimistic, even under systemic transformations. On a regional scale, we find that for developing regions, specifically for sub-Saharan Africa, projected yields stay well below attainable yields, indicating that the large yield gaps which could be closed through improved crop management, may also persist in the future. In OECD countries, in contrast, current yields are already close to attainable yields, and the projections approach or, for some models, even exceed attainable yields by 2050. This observation parallels research suggesting that future progress in attainable yields in developed regions will mainly have to be achieved through new crop varieties or genetic improvements. The models included in this study vary widely in their implementation of yield progress, which are often split into endogenous (crop management) improvements and exogenous (technological) trends. More detail and transparency are needed in these important elements of global yields and land use projections, and this paper discusses possibilities of better aligning agronomic understanding of yield gaps and yield potentials with modelling approaches.  相似文献   

5.
Most African countries struggle with food production and food security. These issues are expected to be even more severe in the face of climate change. Our study examines the likely impacts of climate change on agriculture with a view to propose adaptation options, especially in hard hit regions. We use a crop model to evaluate the impact of various sowing decisions on the water satisfaction index (WSI) and thus the yield of maize crop. The crop model is run for 176 stations over southern Africa, subject to climate scenarios downscaled from 6 GCMs. The sensitivity of these simulations is analysed so as to distinguish the contributions of sowing decisions to yield variation. We compare the WSI change between a 20 year control period (1979–1999) and a 20 year future period (2046–2065) over southern Africa. These results highlight areas that will likely be negatively affected by climate change over the study region. We then calculate the contribution of sowing decisions to yield variation, first for the control period, then for the future period. This contribution (sensitivity) allows us to distinguish the efficiency of adaptation decisions under both present and future climate. In most countries rainfall in the sowing dekad is shown to contribute more significantly to the yield variation and appears as a long term efficient decision to adapt. We discuss these results and additional perspectives in order to propose local adaptation directions.  相似文献   

6.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

7.
As one of the key grain-producing regions in China, the agricultural system in the North China Plain (NCP) is vulnerable to climate change due to its limited water resources and strong dependence on irrigation for crop production. Exploring the impacts of climate change on crop evapotranspiration (ET) is of importance for water management and agricultural sustainability. The VIP (Vegetation Interface Processes) process-based ecosystem model and WRF (Weather Research and Forecasting) modeling system are applied to quantify ET responses of a wheat-maize cropping system to climate change. The ensemble projections of six General Circulation Models (GCMs) under the B2 and A2 scenarios in the 2050s over the NCP are used to account for the uncertainty of the projections. The thermal time requirements (TTR) of crops are assumed to remain constant under air warming conditions. It is found that in this case the length of the crop growth period will be shortened, which will result in the reduction of crop water consumption and possible crop productivity loss. Spatially, the changes of ET during the growth periods (ETg) for wheat range from ?7 to 0 % with the average being ?1.5?±?1.2 % under the B2 scenario, and from ?8 to 2 % with the average being ?2.7?±?1.3 % under the A2 scenario/consistently, changes of ETg for maize are from ?10 to 8 %, with the average being ?0.4?±?4.9 %, under the B2 scenario and from ?8 to 8 %, with the average being ?1.2?±?4.1 %, under the A2 scenario. Numerical analysis is also done on the condition that the length of the crop growth periods remains stable under the warming condition via breeding new crop varieties. In this case, TTR will be higher and the crop water requirements will increase, with the enhancement of the productivity. It is suggested that the options for adaptation to climate change include no action and accepting crop loss associated with the reduction in ETg, or breeding new cultivars that would maintain or increase crop productivity and result in an increase in ETg. In the latter case, attention should be paid to developing improved water conservation techniques to help compensate for the increased ETg.  相似文献   

8.
The impact of future climate change on sugar beet yields is assessed over western Europe using future (2021–2050) climate scenario data from a General Circulation Model (GCM) and the Broom's Barn simulation model of rain-fed crop growth and yield. GCM output for the 1961–1990 period is first compared with observed climate data and shown to be reliable for regions west of 24° E. Comparisons east of this meridian were less reliable with this GCM (HadCM2) and so were omitted from simulations of crop yield. Climate change is expected to bring yield increases of around 1 t/ha of sugar in northern Europe with decreases of a similar magnitude in northern France, Belgium and west/central Poland, for the period 2021–2050. Averaged for the study area (weighted by current regional production), yields show no overall change due to changed climate. However, this figure masks significant increases in yield potential (due to accelerated growth in warmer springs) and in losses due to drought stress. Drought losses are predicted to approximately double in areas with an existing problem and to become a serious new problem in NE France and Belgium. Overall west and central Europe simulated average drought losses rise from 7% (1961–1990) to 18% (2021–2050). The annual variability of yield (as measured by the coefficient of variation) will increase by half, from 10% to 15% compared to 1961–1990, again with potentially serious consequences for the sugar industry. The importance of crop breeding for drought tolerance is further emphasised. These changes are independent of the 9% yield increase which we estimate, on the basis of work by Demmers-Derks et al. (1998), is the likely direct effect of the increase in atmospheric CO2 concentration by 2021–2050.  相似文献   

9.
Adaptation of agriculture to climate change   总被引:2,自引:1,他引:2  
Preparing agriculture for adaptation to climate change requires advance knowledge of how climate will change and when. The direct physical and biological impacts on plants and animals must be understood. The indirect impacts on agriculture's resource base of soils, water and genetic resources must also be known. We lack such information now and will, likely, for some time to come. Thus impact assessments for agriculture can only be conjectural at this time. How-ever, guidance can be gotten from an improved understanding of current climatic vulnerabilities of agriculture and its resource base, from application of a realistic range of climate change scenarios to impact assessment, and from consideration of the complexity of current agricultural systems and the range of adaptation techniques and policies now available and likely to be available in the future.  相似文献   

10.
Changes in climate as projected by state-of-the-art climate models are likely to result in novel combinations of climate and topo-edaphic factors that will have substantial impacts on the distribution and persistence of natural vegetation and animal species. We have used multivariate techniques to quantify some of these changes; the method employed was the Multivariate Spatio-Temporal Clustering (MSTC) algorithm. We used the MSTC to quantitatively define ecoregions for the People’s Republic of China for historical and projected future climates. Using the Köppen–Trewartha classification system we were able to quantify some of the temperature and precipitation relationships of the ecoregions. We then tested the hypothesis that impacts to environments will be lower for ecoregions that retain their approximate geographic locations. Our results showed that climate in 2050, as projected from anthropogenic forcings using the Hadley Centre HadCM3 general circulation model, were sufficient to create novel environmental conditions even where ecoregions remained spatially stable; cluster number was found to be of paramount importance in detecting novelty. Continental-scale analyses are generally able to locate potentially static ecoregions but they may be insufficient to define the position of those reserves at a grid cell-by-grid cell basis.  相似文献   

11.
The ‘climate justice’ lens is increasingly being used in framing discussions and debates on global climate finance. A variant of such justice – distributive justice – emphasises recipient countries’ vulnerability to be an important consideration in funding allocation. The extent to which this principle is pursued in practice has been of widespread and ongoing concerns. Empirical evidence in this regard however remains inadequate and methodologically weak. This research examined the effect of recipients’ climate vulnerability on the allocation of climate funds by controlling for other commonly-identified determinants. A dynamic panel regression method based on Generalised Method of Moments (GMM) was used on a longitudinal dataset, containing approved funds for more than 100,000 projects covering three areas of climate action (mitigation, adaptation, and overlap) in 133 countries over two decades (2000–2018). Findings indicated a non-significant effect of recipients’ vulnerability on mitigation funding, but significant positive effects on adaptation and overlap fundings. ‘Most vulnerable’ countries were likely to receive higher amounts of these two types of funding than the ‘least vulnerable’ countries. All these provided evidence of distributive justice. However, the relationship between vulnerability and funding was parabolic, suggesting ‘moderately vulnerable’ countries likely to receive more funding than the ‘most vulnerable’ countries. Whilst, for mitigation funding, this observation was not a reason for concern, for adaptation and overlap fundings this was not in complete harmony with distributive justice. Paradoxically, countries with better investment readiness were likely to receive more adaptation and overlap funds. In discordance with distributive justice, countries within the Sub-Saharan Africa and South Asia regions, despite their higher climatic vulnerabilities, were likely to receive significantly less adaptation and overlap fundings. Effects of vulnerability were persistent, and past funding had significant effects on current funding. These, coupled with the impact of readiness, suggested a probable Low Funding Trap for the world’s most vulnerable countries. The overarching conclusion is that, although positive changes have occurred since the 2015 Paris Agreement, considerable challenges to distributive justice remain. Significant data and methodological challenges encountered in the research and their implications are also discussed.  相似文献   

12.
The various bases for making Australian and New Zealand scenarios of climate change at 2010 and 2050 AD are discussed. Atmospheric greenhouse gas increases will cause historically unprecedented warming by 2050 AD, but the likely regional rainfall changes are uncertain. By 2010 AD greenhouse gas climate change should be detectable with a warming relative to the present of 0.5–1.5 °C. At 2050 AD Australian and New Zealand temperatures will be 2–3 °C higher, the frost free season will be longer and the snowline higher. Rainfall changes will be very much determined by regional airflow and storm tracks, and the state of the Southern Oscillation. In order to obtain unproved and more detailed estimates of climate at 2010 and 2050 AD existing climate models need to be improved. For Australia and New Zealand models need to focus on the south west Pacific-Australia region.  相似文献   

13.
Ghana and Côte d’Ivoire are the world’s leading cocoa (Thebroma cacao) producing countries; together they produce 53 % of the world’s cocoa. Cocoa contributes 7.5 % of the Gross Domestic Product (GDP) of Côte d’Ivoire and 3.4 % of that of Ghana and is an important cash crop for the rural population in the forest zones of these countries. If progressive climate change affected the climatic suitability for cocoa in West Africa, this would have implications for global cocoa output as well as the national economies and farmer livelihoods, with potential repercussions for forests and natural habitat as cocoa growing regions expand, shrink or shift. The objective of this paper is to present future climate scenarios for the main cocoa growing regions of Ghana and Côte d’Ivoire and to predict their impact on the relative suitability of these regions for growing cocoa. These analyses are intended to support the respective countries and supply chain actors in developing strategies for reducing the vulnerability of the cocoa sector to climate change. Based on the current distribution of cocoa growing areas and climate change predictions from 19 Global Circulation Models, we predict changes in relative climatic suitability for cocoa for 2050 using an adapted MAXENT model. According to the model, some current cocoa producing areas will become unsuitable (Lagunes and Sud-Comoe in Côte d’Ivoire) requiring crop change, while other areas will require adaptations in agronomic management, and in yet others the climatic suitability for growing cocoa will increase (Kwahu Plateu in Ghana and southwestern Côte d’Ivoire). We recommend the development of site-specific strategies to reduce the vulnerability of cocoa farmers and the sector to future climate change.  相似文献   

14.
Spatial variation of crop yield response to climate change in East Africa   总被引:1,自引:0,他引:1  
There is general consensus that the impacts of climate change on agriculture will add significantly to the development challenges of ensuring food security and reducing poverty, particularly in Africa. While these changes will influence agriculture at a broad scale, regional or country-level assessments can miss critical detail. We use high-resolution methods to generate characteristic daily weather data for a combination of different future emission scenarios and climate models to drive detailed simulation models of the maize and bean crops. For the East African region, there is considerable spatial and temporal variation in this crop response. We evaluate the response of maize and beans to a changing climate, as a prelude to detailed targeting of options that can help smallholder households adapt. The results argue strongly against the idea of large, spatially contiguous development domains for identifying and implementing adaptation options, particularly in regions with large variations in topography and current average temperatures. Rather, they underline the importance of localised, community-based efforts to increase local adaptive capacity, take advantage of changes that may lead to increased crop and livestock productivity where this is possible, and to buffer the situations where increased stresses are likely.  相似文献   

15.
This study aims to evaluate soil climate quantitatively under present and projected climatic conditions across Central Europe (12.1°–18.9° E and 46.8°–51.1° N) and the U.S. Central Plains (90°–104° W and 37°–49° N), with a special focus on soil temperature, hydric regime, drought risk and potential productivity (assessed as a period suitable for crop growth). The analysis was completed for the baselines (1961–1990 for Europe and 1985–2005 for the U.S.) and time horizons of 2025, 2050 and 2100 based on the outputs of three global circulation models using two levels of climate sensitivity. The results indicate that the soil climate (soil temperature and hydric soil regimes) will change dramatically in both regions, with significant consequences for soil genesis. However, the predicted changes of the pathways are very uncertain because of the range of future climate systems predicted by climate models. Nevertheless, our findings suggest that the risk of unfavourable dry years will increase, resulting in greater risk of soil erosion and lower productivity. The projected increase in the variability of dry and wet events combined with the uncertainty (particularly in the U.S.) poses a challenge for selecting the most appropriate adaptation strategies and for setting adequate policies. The results also suggest that the soil resources are likely be under increased pressure from changes in climate.  相似文献   

16.
Climate Change and Agricultural Soils: Impacts and Adaptation   总被引:8,自引:1,他引:7  
This article reviews the current state of knowledge on the response of soils to climate change, and the implications such changes have for agriculture. The article is based on the material reported in the IPCC second assessment report (Watson et al., 1996) and updated with more recent information, where appropriate. The review highlights the importance of understanding the dynamics of soil processes when addressing climate change impacts on agriculture. Rapid soil responses to climate change (e.g. soil water, organic carbon and erodibility) have been widely investigated and reported in the literature. However, it is important that longer-term processes (e.g. pedogenesis) are not ignored by the research community because these have potentially important implications for long-term agricultural land use and are often irreversible. The use of good land management practices, as currently understood, provides the best strategy for adaptation to the impact of climate change on soils. However, it appears likely that farmers will need to carefully reconsider their management options, and land use change is likely to result from different crop selections that are more appropriate to the changing conditions. Perhaps the greatest impact of climate change on soils will arise from climate-induced changes in land use and management.  相似文献   

17.
减缓和适应是应对气候变化的互补性策略,但在《联合国气候变化框架公约》(简称《公约》)的谈判中,适应在很长一段时期都处于减缓的从属地位。《公约》20多年的适应谈判进程可划为早期缓慢发展、科学和技术讨论、适应与减缓并重、增强适应行动和全面适应行动5个阶段,呈现出由无到有、重要性不断增强的特点。这一特点反映了全球对气候变化影响和适应重要性认识的不断深入及适应气候变化挑战的不断增强。未来适应谈判将聚焦于如何通过《公约》现有机制增强行动及如何增加适应资金以满足发展中国家的适应需求。  相似文献   

18.
Climate change has the potential to be a source of increased variability if crops are more frequently exposed to damaging weather conditions. Yield variability could respond to a shift in the frequency of extreme events to which crops are susceptible, or if weather becomes more variable. Here we focus on the United States, which produces about 40% of the world’s maize, much of it in areas that are expected to see increased interannual variability in temperature. We combine a statistical crop model based on historical climate and yield data for 1950–2005 with temperature and precipitation projections from 15 different global circulation models. Holding current growing area constant, aggregate yields are projected to decrease by an average of 18% by 2030–2050 relative to 1980–2000 while the coefficient of variation of yield increases by an average of 47%. Projections from 13 out of 15 climate models result in an aggregate increase in national yield coefficient of variation, indicating that maize yields are likely to become more volatile in this key growing region without effective adaptation responses. Rising CO2 could partially dampen this increase in variability through improved water use efficiency in dry years, but we expect any interactions between CO2 and temperature or precipitation to have little effect on mean yield changes.  相似文献   

19.
纵深并拓宽气候适应国际合作,是《巴黎协定》增强适应行动的主要内容,是“后巴黎”时代延续全面适应行动的重要组成部分。在系统地调研和梳理主要国家/集团适应气候变化国际合作机制以及全球气候适应国际合作重点领域的基础上,分析中国近年来开展的政府间交流机制,双、多边合作机制,国际组织合作以及与发展中国家开展的南南合作等适应气候变化合作重点工作,总结出资金缺乏、合作渠道多元化不足、国际合作模式亟待深化以及“后疫情”时代经济绿色复苏的挑战是中国开展适应气候变化国际合作面临的主要问题。“后巴黎”时代,中国作为全球生态文明建设的重要参与者、贡献者、引领者,深化气候适应国际合作将落脚于深度参与全球气候适应治理机制的建设、深化与全球适应中心的合作、探索气候适应国际合作重点领域和重点工作以及进一步开拓跨国对标城市间的适应气候变化国际合作。  相似文献   

20.
Policy efforts to address climate change are increasingly focused on adaptation, understood as adjustments in human systems to moderate the harm, or exploit beneficial opportunities, related to actual or expected climate impacts. We examine individual-level determinants of support for climate adaptation policies, focusing on whether individuals’ exposure to extreme weather events is associated with their support for climate adaptation policies. Using novel public opinion data on support for a range of adaptation policies, coupled with high resolution geographic data on extreme weather events, we find that individuals experiencing recent extreme weather activity are more likely to support climate change adaptation policy in general, but that the relationship is modest, inconsistent across specific adaptation policies, and diminishes with time. The data thus suggest that experiencing more severe weather may not appreciably increase support for climate adaptation policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号