首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 793 毫秒
1.
The mineral composition and geochemical characteristics of the ores of the Malinovskoe gold-ore deposit are studied by the data from mining works (ditches, cleanings, and boreholes). It is found that the ore–magma system of the deposit was formed in several stages of mineralization characterized by two phases of magmatism differing in age. In terms of the set of features (the geological–structural position of the deposit, as well as the material composition and geochemical characteristics of the ores), the deposit is attributed to the gold–tourmaline type of mineralization associated spatially and genetically with the “raremetal” granitoid magmatism. This type has not previously been found in Primorskii Krai. The studies of the material composition and geochemical characteristics of the ores allow us to ascertain the correlations between the elements along with the reasons of their origination. By analogy with other gold-ore formations of the Russian Far East, the mineralogical and geochemical model of the deposit is developed (Be–Sn–Cr–Ba–Au–Cu–Mo–Pb–V–Ti–Co–W–Ag–Bi–Ni–Mn–Sr–Zn–Sb–As modeling element series of vertical zoning), which enables us to estimate the levels of the erosion section of the ore bodies and to evaluate their prospects. It is found that the most productive associations in the deposit are the gold–bismuth geochemical association (Au–Ag–Bi–Cu–As–Co) and, to a lesser degree, the gold–tungsten association (W–Au–Ag–Cu–Bi–As).  相似文献   

2.
Fifty sediment samples were collected from Osun (urban) and Erinle (suburban) rivers in addition to ten samples of the underlying rock types (schist and gneiss) and analyzed for elemental constituents while speciation of metals was determined by sequential analysis. Data were geochemically evaluated and ArcGIS was used to generate geochemical maps. Metal concentrations (ppm) in sub-urban and urban areas were Cd (0.2–0.2, 0.2–1.1), Cu (37.0–272.0, 49.0–970.0), Ni (6.0–27.0, 3.0–43.0), Pb (16.0–67.0, 15.0–2650.0), Zn (32.0–170.0, 50.0–987.0), Co (8.0–60.0, 2.0–86.0), Cr (26.0–153.0, 9.0–128.0), V (30.0–142.0, 9.0–135.0), and Mn (442.0–5100.0, 107.0–3930.0), respectively. In the rocks, Cu, Ni, Pb, Co, Cr, V, and Zn, concentrations (ppm) were below detection limit (BDL)-0.05, BDL-38.00; 6.23–12.00, BDL-20.00; 3.78–6.23, BDL-5.00; BDL-0.20, BDL-4.00; 5.00–9.00, BDL-66.00; 15.99–32.00, BDL-130.00; and 18.00–26.00, BDL-48.00, respectively, with Cu, Pb, Zn, Cd, and Mn of elevated concentrations in sediments compared with that of the rocks, being indication of additional anthropogenic sourcing. Calculated contamination indices revealed contamination for sediment from the urban areas compared to those from the sub-urban. High percentage of Pb (2.94–81.92%), Cu (31.69–45.95%), Zn (49.2–65.5%), Cd (31.69–45.95%), and Mn (12.13–37.50%) are hosted by the bio-available phases (carbonate, organic, and sulfide). The geochemical distribution of metals in the sediments of the Osun and Erinle rivers is governed by both geogenic (Ni-Cr-Co-V) and anthropogenic (Pb-Cd-Zn) activities. Elevated concentration and occurrences of the selected metals in the bio-available phases pose potential health risk to people in the urban area.  相似文献   

3.
The results of Sm–Nb isotopic–geochemical studies of metasedimentary and metavolcanic rocks of the Dzheltulak Group of the central part of the Dzheltulak suture, as well as geochronological U–Th–Pb (LA ICP MS) studies of detrital zircons from metasedimentary rocks, which are considered as Paleoproterozoic in current stratigraphic schemes, are presented. The age of the youngest zircons is 170–190 Ma, whereas the age of the last stage of regional metamorphism is 140–150 Ma. Thus, the Dzheltulak Group hosts metasedimentary rocks, the age of the protolith of which ranges from 140–150 to 170–190 Ma. The detrital zircons derived from intrusive and metamorphic rocks of the Selenga–Stanovoi and Dzhugdzhur–Stanovoi superterranes.  相似文献   

4.
In the mantle carbonatite concept of diamond genesis, the data of a physicochemical experiment and analytical mineralogy of inclusions in diamond conform well and solutions to the following genetic problems are generalized: (1) we substantiate that upper mantle diamond-forming melts have peridotite/eclogite–carbonatite–carbon compositions, melts of the transition zone have (wadsleyite ? ringwoodite)–majorite–stishovite–carbonatite–carbon compositions, and lower mantle melts have periclase/wüstite–bridgmanite–Ca-perovskite–stishovite–carbonatite–carbon compositions; (2) we plot generalized diagrams of diamondforming media illustrating the variable compositions of growth melts of diamonds and paragenetic phases, their genetic relationships with mantle matter, and classification relationships between primary inclusions; (3) we study experimentally equilibrium diagrams of syngenesis of diamonds and primary inclusions characterizing the diamond nucleation and growth conditions and capture of paragenetic and xenogenic minerals; (4) we determine the fractional phase diagrams of syngenesis of diamonds and inclusions illustrating regularities in the ultrabasic–basic evolution and paragenetic transitions in diamond-forming systems of the upper and lower mantle. We obtain evidence for physicochemically similar melt–solution ways of diamond genesis at mantle depths with different mineral compositions.  相似文献   

5.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

6.
With the aim of better understanding geochemistry of coal, 71 Late Permian whole-seam coal channel samples from western Guizhou Province, Southwest China were studied and 57 elements in them were determined. The contents of Al, Ca, Co, Cr, Cu, Fe, Ga, Hf, K, Li, Mn, Mo, Nb, Ni, Sn, Ta, Ti, Th, U, V, Zr, and REEs in the Late Permian coals from western Guizhou Province are higher than the arithmetic means for the corresponding elements in the US coals, whereas As, Ba, Br, F, Hg, P, Se, and Tl are lower. Compared to common Chinese coals, the contents of Co, Cr, Cu, Ga, Hf, Li, Mn, Mo, Ni, Sc, Sn, Ti, U, V, Zn, and Zr in western Guizhou coals are higher, and As, F, Hg, Rb, Sb, Tl, and W are lower. Five groups of elements may be classified according to their mode of occurrence in coal: The first two, Group A, Tm–Yb–Lu–Y–Er–Ho–Dy–Tb–Ce–La–Nd–Pr–Gd–Sm, and Group B, As–Sr–K–Rb–Ba–F–Ash–Si–Sn–Ga–Hf–Al–Ta–Zr–Be–Th–Na, have high positive correlation coefficients with ash yield and they show mainly inorganic affinity. Some elements from Group B, such as Ba, Be, Ga, Hf, and Th, are also characterized by significant aluminosilicate affinity. In addition, arsenic also exhibits high sulfide affinity (rS–Fe>0.5). The elements, which have negative or lower positive correlation coefficients with ash yield (with exceptions of Bi, Cs, Nb, Mn, Se, and Ti), are grouped in other four associations: Group C, Cr–V–Mo–U–Cd–Tl; Group D, Hg–Li–Sc–Ti–Eu–Nb–Cs–W; Group E, Bi–Sb; and Group F, Co–Ni–Cu–Pb–Zn–Mg–Se–Ca–Mn–S–Fe. The correlation coefficients of some elements, including Co, Cr, Cu, Fe, Hg, Li, Mo, Ni, P, S, Sc, U, V, and Zn, with ash yield are below the statistically significant value. Only Cr and Cu are negatively correlated to ash yield (−0.07 and −0.01, respectively), showing intermediate (organic and inorganic) affinity. Manganese and Fe are characterized by carbonate affinity probably due to high content of epigenetic veined ankerite in some coals. Phosphorus has low correlation coefficients with any other elements and is not included in these six associations. There are five possible genetic types of enrichment of elements in coal from western Guizhou Province: source rock, volcanic ash, low-temperature hydrothermal fluid, groundwater, and magmatic hydrothermal inputs.  相似文献   

7.
This article presents new data on the age of the largest gold deposits in the southeastern part of Eastern Sayan. The dates have been obtained by Ar–Ar analysis of micas occurring in gold-bearing quartz veins and mineralized zones. The obtained Ar–Ar ages of fuchsite and sericite from the tectonized and mineralized zones of the Zun–Holba deposit (ore body Severnoye-3), range within 353.9–386.4 Ma; a similar result of 352.9 Ma was yielded by Ar–Ar dating of Cr–muscovite from mylonitized listvenite in the veins of the periphery of the Zun–Ospa gold deposit. However, muscovite from the ore-bearing quartz vein of the Pioneer gold–quartz deposit, located near Zun–Holba, has been dated to 421.9 Ma. The obtained new data on isotopic age of the gold–quartz ores and gold–sulphide–quartz deposits allow recognition of the Early Palaeozoic accretion–collision and the Late Palaeozoic shearing stages of formation of gold mineralization in the SE Eastern Sayan.  相似文献   

8.
A regional tree-ring width chronology of Schrenk spruce(Picea schrenkiana) was used to determine the annual(previous July to current June) streamflow of the Kuqa River in Xinjiang, China, for the period of 1414–2015. A linear transformation of the tree-ring data accounted for 63.9% of the total variance when regressed against instrumental streamflow during 1957–2006. The model was validated by comparing the regression estimates against independent data. High streamflow periods with a streamflow above the 602-year mean occurred from 1430–1442, 1466–1492, 1557–1586, 1603–1615, 1687–1717, 1748–1767, 1795–1819, 1834–1856, 1888–1910 and 1989–2015. Low streamflow periods(streamflow below the mean) occurred from 1419–1429, 1443–1465, 1493–1556, 1587–1602, 1616–1686, 1720–1747, 1768–1794, 1820–1833, 1857–1887 and 1911–1988. The reconstruction compares well with the tree-ring-based streamflow series of the Tizinafu River from the Kunlun Mountains; both show well-known severe drought events. The streamflow reconstruction also shows highly synchronous upward trends since the 1980 s, suggesting that streamflow is related to Central Asian warming and humidification. Thus, the influences of the extremes and the persistence of low streamflows on local society may be considerable. Climatic changes in the watershed may be responsible for the change in the hydrologic regime of the Tarim Basin observed during the late twentieth century.  相似文献   

9.
Abstract: A spectrum of intrusion-related vein gold deposits is recognized. Representative examples are described of the following geochemical associations: Au-Fe oxide–Cu, Au–Cu–Mo–Zn, Au–As–Pb–Zn–Cu, Au–Te–Pb–Zn–Cu and Au–As–Bi–Sb. The associated intrusions range from small outcropping stocks to complex batholiths. The different vein associations are believed to reflect the compositions of related intrusions, which themselves characterize distinct tectonic settings. The Au-Fe oxide–Cu and Au–Cu–Mo–Zn associations belong to two broad groups of deposits, Fe oxide–Cu–Au and porphyry Cu–Au, both of which are related to highly oxidized calc-alkaline intrusions emplaced in sub–duction–related arcs. The Au–As–Pb–Zn–Cu association seems to be linked to somewhat less oxidized intrusions emplaced in a similar setting. The Au–Te–Pb–Zn–Cu association, which possesses well-known epithermal counterparts, is also found with highly oxidized intrusions, but of alkaline composition and back-arc location. In contrast, the Au–As–Bi–Sb association, part of a newly recognized class of intrusion-hosted Au–Bi–W–As deposits, is related to relatively reduced intrusions, spanning the boundary between the magnetite– and ilmenite–series. Such intrusions, which may host major bulk-mineable gold deposits, were emplaced along the landward sides of arcs, possibly during lulls in subduction, as well as in continental collision settings. Therefore, a variety of geological environments is prospective for vein and, by extrapolation, other styles of gold mineralization, not all of them fully appreciated in the past. Several features of vein gold deposits, including imprecise relationships to individual intrusive phases, poorly developed mineral and metal zoning, apparent time gaps between intrusion and mineralization and presence of low–salinity, CO2–rich fluid inclusions, are commonly taken to indicate a non-igneous origin and to be more typical of orogenic (mesothermal) gold deposits generated during accretionary tectonic events. However, several or all of these features apply equally to some intrusion– related vein gold deposits and, therefore, do not constitute distinguishing criteria. The currently popular assignment of most gold-rich veins to the orogenic category requires caution, because of the geological convergence that they show with some intrusion-related deposits. A proper distinction between intrusion-related and orogenic gold deposits is crucial for exploration planning.  相似文献   

10.
The tectonic activities occurring since the Cenozoic in the northern part of the Qinghai–Tibet Plateau (the region from the East Kunlun Mountains to the Tanggula Mountains) were probably caused by the intense intraplate deformation propagation after the collision between the Indian plate and the Eurasian plate. Their main expressions include the substantial uplifting of the plateau, alternation of horizontal extension and compression under the vertical greatest principal stress α1, occurrence of rift–type volcanic activity, formation of the basin–range system, and successive eastward extrusion of blocks resulting from large–scale strike–slip faulting. Geophysical exploration and experiments have revealed that there exist closely alternating horizontal high–velocity and low–velocity layers as well as lithospheric faults of a left–lateral strike–slip sense in the lower part of the lithosphere (the lower crust and lithospheric mantle, 60–120 km deep), Based on an integrated study of the geological–geophysical data available, the authors have proposed a model of deep–seated mantle diapir and the associated tectonophysical process as the dynamic source for the uplift of the northern part of the Qinghai–Tibet Plateau.  相似文献   

11.
Lykhin  D. A.  Yarmolyuk  V. V.  Vorontsov  A. A.  Travin  A. V. 《Doklady Earth Sciences》2019,488(1):1039-1045
Doklady Earth Sciences - The geochronological and geochemical parameters of the Raduga muscovite–fluorite–euclase–beryl deposit, located within the Kizir–Kazyr zone of...  相似文献   

12.
Gallium-containing chlorite, mica, and magnetite (up to 14, 13, and 5–7 wt % of Ga) along with Ga hydroxides (oxyhydroxides?) were found for the first time in massive sulfide deposit in the Urals. The minerals identified within the cement of chalcopyrite–sphalerite breccias of the Shemur copper–zinc–massive sulfide deposit (Northern Urals) are associated with Ga-enriched sphalerite, chalcopyrite, and, less commonly, pyrite (33–364, 67–363, and 4–230 g/t, respectively).  相似文献   

13.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

14.
Geochemistry of Thermal Waters of Continental Margin of Far East of Russia   总被引:2,自引:0,他引:2  
Studied waters belong to warm(T=30-50℃),alkaline(pH=8.9-9.3),low mineralized(TDS235 mg/1)Na-HCO_3 or Na-SO_4-HCO_3 thermal waters with high content of SiO_2(up to 81 mg/l)and F(up to 3.9 mg/1),occur on modern volcano-tectonic rejuvenated areas of Eastern Sikhote-Alin orogenic belt.Low~3He concentration as well as N_2/O_2 and N_2/Ar ratios exclude influence of deep mantle fluid.New rare earth element data constrain our understandmg of water-rock interaction occurring in the water source region.Meteoric origin of waters is proved by stable isotope values varying from-71‰to-136.1‰and from-10.8‰to-18.8‰forδ~2U andδ~(18)O respectively.REE patterns reflect high pH,resultfing from water-rock interaction and oxidative conditions.Calculations of deep aquifer temperature using Na-K and quartz geothermometers show 116.8-131.1°C and 82.2-125.8℃respectively.Presence of deep faults both with abnormal thermal gradient(~45-50 K/km)define unique geochemical shape of thermal waters of Sikhote-Alin,area,where no present volcanic activity is registered.  相似文献   

15.
The Beishan complex is composed of orthogneiss and metagreywacke that both enclose bodies of eclogite and serves as a unique example for comparative petrological study of all these lithologies. The rocks show the earliest regional steep N-S striking fabric (S2) preserved in low strain domains that are reworked by ubiquitous steep N-NE dipping cleavage (S3). The eclogite shows an almost isotropic fabric defined by an M1 assemblage of Grt–Cpx–Amp–Qz–Rt–Ilm that is locally retrogressed to M2-3 amphibolite facies mineral assemblages, with P–T peak at 20–21 kbar and 750–775°C and retrogression to 2–3kbar and 530–550°C. The typical mineral assemblage of the host metagreywackes is Bt–Ms–Pl–Qz−Chl–Ilm±Grt. Rare Al-rich metagreywacke layers are composed of Grt–Ky–St±Sil−And–Bt–Ms–Pl–Qz±Chl±Rt–Ilm giving a P–T path with peak at 8–8.5kbar and ~670°C correlated with the S2 fabric and retrogression to ~2.5kbar and 525–550°C correlated with the S3 foliation. In two eclogite samples, the garnet-whole rock-clinopyroxene Lu–Hf isochrons give ages of 461.9±1.6 Ma and 462.0±6.2 Ma interpreted as reflecting average age of garnet formation, and Sm–Nd isochrons give ages of 453.6±2.7 Ma and 452.8±3.0 Ma interpreted as dating near-peak metamorphism. In metagreywacke, in-situ U–Pb dating of monazite gives two groups of ages of 445–440 Ma (Mnz cores) and 436–429 Ma (Mnz rims), interpreted as reflecting the metamorphic peak and retrogression. Our results show that eclogite was formed during Ordovician by subduction of a continental crust (D1). Eclogite and metagreywacke underwent partly decoupled P–T–t–D paths until their juxtaposition at mid-crustal levels during a first late Ordovician–early Silurian D2 shortening. Coupling of their P–T–t–D paths occurred during exhumation in the Silurian and a second and orthogonal D3 shortening event. The data from the Beishan Orogen are consistent with a collisional intra-Gondwanan orogen located south of the Central Asian Orogenic Belt.  相似文献   

16.
《Resource Geology》2018,68(1):83-92
Cu–Mo mineralization occurs in southern part of the Chatree Au–Ag deposit, central Thailand. Quartz veins of Cu–Mo mineralization are divided into five types: Types A, B, C, D and E. Quartz veins of Types A, B and C are hosted in altered granodiorite porphyry, and quartz veins of Types D and E occur in altered andesite lava. Mineral assemblages of Types A, B and C quartz veins are composed of qz–chl–ilt–mol–py–ccp, qz–chl–ilt–ccp–py and qz–chl–ilt–ccp–py–sp–po, respectively. Types D and E quartz veins consist of qz–chl–py–ccp–sp–po and qz–ep, respectively. Fluid inclusions of quartz veins are divided into liquid‐rich two‐phases fluid inclusion, vapor‐rich two‐phases fluid inclusion and multiphase solid‐bearing fluid inclusion. Coexistence of a halite‐bearing fluid inclusion having salinity of 37 equiv. wt.% NaCl and a vapor‐rich two‐phases fluid inclusion having salinity of 1 equiv. wt.% NaCl suggests that the Cu–Mo‐bearing quartz veins were formed at temperature of 450°C and pressure of 250 bars (depth of approximately 1.5 km from the paleosurface). Based on the formation temperature of 450°C of quartz veins and the δ18O values of quartz of the quartz veins, the δ18O value of fluid responsible for the Cu–Mo‐bearing quartz vein is estimated to be +9.9‰. The origin of fluid forming the Cu–Mo‐bearing quartz veins in the N prospect of the Chatree mining area would be magmatic water. Based on the characteristics of geology, age, mineral assemblage and the formation environment, Cu–Mo mineralization would be different from the epithermal Au–Ag mineralization of the Chatree mining area.  相似文献   

17.
Cai  Cong  Ma  Wei  Zhou  Zhiwei  Mu  Yanhu  Zhao  Shuping  Chen  Dun  Liao  Mengke 《Acta Geotechnica》2019,14(1):179-192
Acta Geotechnica - In this paper, a series of triaxial cyclic loading–unloading (L–U-C), triaxial cyclic loading–unloading–holding (L–U–H-C) and triaxial cyclic...  相似文献   

18.
Reaction path modeling of water–rock interaction in a gneissic shallow aquifer of the Sila Massif was performed in kinetic (time) mode, under conditions of closed-system with secondary minerals and closed-system with CO2, to investigate the influence of both dolomite dissolution and biotite dissolution on the chemical characteristics of secondary vermiculites. Magnesium–Al- and calcium–Al-vermiculites are the major components of the vermiculite solid solution precipitated in the early stages of the process, which is dominated by dolomite dissolution. In contrast, Mg–Mg–Fe- and Ca–Mg–Fe vermiculites are important components of the vermiculite solid solution produced in the late stages of the process, where biotite dissolution prevails. Outcomes of this reaction-path-modeling exercise on vermiculite chemistry are fully consistent with the results obtained by Apollaro et al. (in press) through speciation–saturation calculations. In particular, Apollaro et al. (in press) showed that the pH of Mg–Al-vermiculite/Mg–Mg–Fe-vermiculite coexistence is 7.3. This value is virtually equal to the pH of Mg–Al-vermiculite/Mg–Mg–Fe-vermiculite iso-activity, 7.35, which is obtained from the results of reaction-path-modeling runs 3 and 4 carried out in this work.  相似文献   

19.
Thermodynamic calculations using the HCh software were made for mineral equilibriums including REEs in the fluoride–sulfide–chloride–carbonate–sulfate–system in the presence of Na, Ca, and P with fluids of various acidities–alkalinities [11]. The obtained thermodynamic characteristics of thenardite allowed us to carry out the calculations for this phase under complicated hydrothermal conditions simulating the presence of oxidized fluids at 500–100°C and 2000–125 bar. Among other solid phases, REEs–fluorite, monazite, and REE–F–apatite were formed as CaF2–(Ln,Y)F3, LnPO4, and Ca5(PO4)3F–(Ln,Y)3(PO4)3 ideal solid solutions, respectively, where Ln is La, Ce, Pr, Nd, Sm, Eu, and Gd. Xenotime, anhydrite, elemental sulfur, and calcite were found as well.  相似文献   

20.
It has been determined that the Rozhdestvenka Formation of the West Sakhalin Terrane composed of Late Mesozoic igneous rocks is a fragment of the accretionary prism of the Rebun–Kabato–Moneron–Samarga island-arc system. Volcanic eruptions, as well as destruction of the Rebun–Kabato–Moneron–Samarga island-arc and the East Sikhote-Alin volcano plutonic marginal continental belt, were the sources of pyroclastic and clastic material entering the sedimentary basin, where the Pobedinsk and Krasnoyarka suites of the West Sakhalin Terrane were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号