首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rabeh  T.  Omar  Kh. A.  Fergany  E.  Abidin  Z. Z. 《Geotectonics》2021,55(1):128-134
Geotectonics - Seismo-magnetic investigation can play an important role in the investigation of various phenomena connected with earthquakes. The main target of this study is to investigate the...  相似文献   

2.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   

3.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

4.
Nabq sabkha exists 16 km north of Sharm El Sheikh City occupying the low land topography in the alluvial fan zone along the coastal area, Gulf of Aqaba, Sinai, Egypt. The long axis of the sabkha trends NW–SE receiving water from two different sources: meteoric water drained from the surrounding mountainous area and seawater seepage. Field observations help to divide the area into raised beach, hill slopes, sabkha basin, and coastal area. The sabkha basin can be subdivided from its center outward into (1) basin center hypersaline lake flourished with microbial mat and precipitation of halite as rafts, cumulates, and chevrons, (2) saturated saline sand and/or mud flat zone with the extensive growth of gypsum and halite crystals growing displacively as well as different forms of petee structures, and (3) an elevated marginal dry zone with tepee structures. Mineralogical analysis reveals that quartz, halite, and gypsum are the dominant minerals with subordinate amount of aragonite, anhydrite, thenardite, and/or polyhalite. In addition, clay minerals in the mudflat zone are presented by illite and smectite, indicating derivation of soil from the surrounding basement rocks. Chemical analysis of the collected brine samples reveals alkali character in the saline lake (pH?=?7.6) and high concentrations of Na+ (680 meq/l), Cl? (940 meq/l), Mg2+ (208 meq/l), Ca2+ (70 meq/l), SO 4 2+ (30 meq/l), and HCO 3 ? (6 meq/l). The high salinity values are due to the aridity of the area, which favors precipitation of halite. Using comparative sedimentological, chemical, and mineralogial methods between such modern and ancient evaporitic environments and by detailed field, petrographic and mineralogical studies of modern evaporite environments help to interpret paleo-depositional environments of ancient evaporites sequences still in debate.  相似文献   

5.
This study is an attempt to clarify the subsurface geological settings at Abu Darag area in the N part of the Gulf of Suez through the analysis of the available seismic data. The time contour maps of three different reflectors (Top Kareem, Within Rudeis and Top Nukhul) present in this area were constructed and several structures were detected. Generally, the area is considered as a tilted fault block dipping in NE-SW direction and it is dissected by different faults. Major and minor NW-SE faults are the strongest trend in the area while other fault trends are with very weak magnitude and limited extent. All these fault trends restrict between them some high and low areas. Also, two geo-seismic sections were built to confirm the structural prospects on Top Nukhul time contour map.  相似文献   

6.
New multichannel seismic and bathymetric data are presented, which clarify the Plio-Quaternary evolution of the northern Gulf of Aqaba (Elat) and the Dead Sea Transform (DST). The seismic data reveal two main seismic sequences, a lower (pretectonic) and an upper (syntectonic) unit, separated by a prominent unconformity. These units are each linked to a distinct tectonic phase in the history of the DST. Parallel horizons and an undisturbed internal structure point to a tectonic quite time or pure strike-slip without extension or compression during the first (pretectonic) phase. The second (syntectonic) phase, which begins in the early Pliocene, is characterized by a major change in the activity of the DST. The pretectonic sedimentary unit subsided and, consequently, dips southward with a supplementary inclination to the east. The coeval sedimentation of the syntectonic unit is recorded by the divergent reflection pattern and onlap terminations on the unconformity. The apparent fault system seems to be rearranged in the second phase. The stepover of the main strand of the DST from the eastern side of the Elat Deep to the western side of the northern Gulf of Aqaba was mapped in detail for the first time. The very smooth shape of the stepover and the apparent lack of extensional tectonics do not fit with the classical pull-apart basin model for the Elat Deep and point to a decoupling of the crystalline basement from the sedimentary overburden. Comparisons of the new geophysical findings with analog models support this assertion.  相似文献   

7.
One hundred twenty-eight samples of heavy-mineral fractions from sand-size sediments whose mineralogy was previously studied by A. Ayalon, were chosen for this geochemical study. The samples represent the stream sediments along the coastal belt from Elat to Sherm el-Sheikh. This study supplements the geochemical study of A. Zilberfarb and R. Bogoch on the Precambrian terrain of Sinai.The mineral composition of the samples was determined by X-ray diffraction and optical microscopy. In all samples, 14 elements were analyzed: B, Co, Cr, Cu, Ga, Mn, Mo, Nb, Ni, Pb, Sn, Ti, V and Zr. Seven magnetic fractions were separated from twenty of these samples and in these fractions 14 to 20 elements were analyzed, according to the sample. The chemical determinations were mainly by DC emission spectrography.The results were submitted to factor analysis and to association analysis (D. Gill and co-workers). Since the environment is typically arid, there is relatively little chemical weathering. The combined results of both statistical analyses show clearly that three types of source areas can be differentiated: sandstone, metamorphic and granitic terrain. Furthermore, a distinct Mn anomaly was found in the Sherm el-Sheikh area.  相似文献   

8.
The historical seismicity of the last ten centuries and the instrumental data that occurred in the Gulf of Aqaba region during the period 1982–2008 are evaluated. It is found that 12 historical earthquakes have occurred with average recurrence periods 70–90 and 333–500 years for M?≥?6.0 and 7.0, respectively. Those with M?≤?6.5 appear to be incomplete and require further investigation. More than 98 % of the instrumental data has occurred in the form of swarms and sequences. The first have released about 32 % of the total energy and are most likely related to subsurface volcanic activities. Their epicentral distribution indicates that all regional faults of the gulf area are active in the present, but with clear concentration within the area bound by latitudes 28.2°–29.8° and longitudes 34.4°–35.2°. Regional strike-slip faults of the northern two basins appear to be as twice active as the normal, or more. An appreciable level of seismic hazard is envisaged as the “a” value is 6.0–6.2 while the “b” value shows a temporal variation, mostly in the range 0.8–1.05. More than 95 % of the seismic energy was released from earthquakes shallower than 22 km. This indicates a brittle upper crust and a ductile lower crust and upper mantle. Tectonic movements at depths?>?22 km appear to be aseismic. The epicentral distribution of the five swarms indicates that the lengths of the causative faults varied in the range 45–70 km. The maximum expected magnitude is Mw?=?6.8–7.2. This implies a seismic slip rate of about 0.54–0.8 Cm/year and some 20–30 % of aseismic tectonic movements. This and the sequence nature of the seismicity of this region result in a noticeable hazard reduction. Combining the seismicity data of the Gulf of Aqaba region with other geophysical, geological, tectonic, and environmental data, clearly indicate that the seismicity of this region is as old as the initiation of the gulf itself. No apparent southward or northward migration of activity is observed.  相似文献   

9.
Strong-motion parameters, peak ground acceleration, peak ground velocity, and peak ground displacement depend on several factors, such as the source of earthquake, distance between the source and site, and the characteristics of that site. Five seismographs and two accelographs were installed by the Egyptian Geological Survey team along the western side of the Gulf of Aqaba from Taba to Sharm El-Sheikh to record seismic events during the period from September 1995 to June 1996. During this period, two events were recorded by the accelographs. The two accelographs were located on the surface of the basement rocks, the first near the epicenter and the second at a farther distance. However, the farthest accelograph recorded higher values compared to the nearer one. Fault mechanics are an important factor in determining the values of strong motion parameters, where the direction of the rupture line plays an important role in detecting the values of strong motion parameters, the strong motion parameters and damage effects seem to be attenuated very fast in the direction perpendicular to the rupture line. This can be interpreted by the fact that the farthest accelograph lies at the extension of the fault rupture (azimuth = 30°), while the nearer one was perpendicular to the strike of the fault rupture.  相似文献   

10.
Field and petrographic investigations of Holocene evaporites in the Ras El Shetan area, Gulf of Aqaba, Egypt, indicate the presence of microbial mats either in the form of laminites or stromatolites. The morphology of microbial mats and gypsum crystal size characterize the following lithofacies: (1) slump-stromatolitic gypsarenite, (2) random gypsrudite, (3) stromatolitic gypsarenite, and (4) microbially laminated gypsrudite. These evaporite lithofacies are formed above pre-evaporitic mudstones rich in disrupted cyanobacterial filaments, burrows and cerithid gastropods. The morphology of the gypsum crystals is mainly lenticular, indicating enrichment of dissolved organic compounds in the depositional environment. The difference in size of the lenticular gypsum crystals is related to minor changes in salinity and temperature of the parent brine. Fluid inclusions in gypsum crystals indicate their formation at low temperature (<50°C) in a seawater sourced brine that evaporated to gypsum saturation or higher. The brine salinities range from 10·62 to 12·99 equivalent wt% NaCl, and the brine densities range from 1·08 to 1·11 g/cm3. The change in morphology of the microbial mats (stromatolites and laminites) is related mainly to changes in water depth, from a very shallow salina to a coastal sabkha. Lenticular gypsum nucleated displacively in the microbial mats from saline, oxygenated groundwater that seeped from the sea through a barrier.  相似文献   

11.
Mohamed  A.-M. S.  Radwan  A. M.  Omar  Kh. A. 《Geotectonics》2020,54(5):713-722
Geotectonics - Aswan region is a very important region for Egypt where the High Dam is situated. The wellbeing of the dam and its encompassing region is of extreme worry to all the Egyptian...  相似文献   

12.
The concentrations of six heavy metals were studied in five living coral species and their fossil counterparts collected along the Jordanian Coast of the Gulf of Aqaba. The study aimed at investigating the validity of using coral skeletons as bioindicators for environmental pollution by heavy metals in the Gulf of Aqaba, Red Sea. The skeletal samples of the collected corals were acid digested and analyzed for Cd, Cu, Fe, Mn, Pb, and Zn content using flame atomic absorption spectrophotometer. The results obtained have shown that higher concentrations of heavy metals were found in coral skeletons from areas hosting intense developments and human activities. The massive Porites sp. coral tended to accumulate the highest metal concentrations among the other species (except for Mn). This was due to interspecific differences or selectivity of heavy metals between different coral species. It was noteworthy that fossil coral species recorded higher average metal concentrations than their living counterparts; this was attributed to surface contamination due to prolonged burial of the fossil corals in sediment over the years. The study concluded that corals (specially the massive Porites species) are vulnerable to the accumulation of high concentrations of heavy metals in their skeletons and therefore can serve as proxies to monitor environmental pollution.  相似文献   

13.
The Gulf of Aqaba is considered seismically as one of the most active zones of the Dead Sea Transform region. The main shock of the 1995 Gulf of Aqaba earthquake sequence is considered as the largest shock in the (surface wave magnitude Ms?=?7.2) since the sixteenth century. The present study is a trial to detect the probabilistic seismic hazard analysis (PSHA) for Nuweiba site. Data used for this study was a combination of both historical and recent instrumental data. Results of the hazard assessment, expressed as in the worst case scenario, reveal that Nuweiba is exposed to the occurrence of a maximum credible earthquake of magnitude $ m_{{\max }} ~ = ~7.4 \pm 0.31 $ , at hypocentral distance of 15.6?±?10 km. For structure with the return period of 100 years, with a 90% probability of exceedance, the maximum expected earthquake magnitude (ML) is 5.9 in this lifetime. The possibility of the maximum peak ground acceleration at the Nuweiba site is 0.41 g. Results of the hazard assessment can be used as an input data to assess the seismic risk for site of interest.  相似文献   

14.
Beachrocks occur in present-day intertidal zones of the Arabian Gulf and the Gulf of Aqaba, on the eastern and northwestern coasts, respectively, of Saudi Arabia. The beachrocks occur as linear patches within beach deposits, which have variable grain size and detrital compositions. The Arabian Gulf beachrocks are composed of sand-sized bioclasts and siliciclastic grains, whereas the Gulf of Aqaba beachrocks are composed of sand- to pebble-size grains, which are dominated by igneous rock fragments and small amounts of skeletal carbonate grains. The cement includes micritic high-magnesian calcite and isopachous acicular/bladed aragonite. In addition to cements, intergranular pores are locally filled by a lime–mud matrix. Radiocarbon dating of beachrock samples from the Arabian Gulf yielded ages from ca. 655 to 2185 year bp, whereas the Gulf of Aqaba samples range in age between 2745 and 5075 year bp.  相似文献   

15.
Earthquakes in the Gulf of Aqaba were compiled from the Jordan Seismological Observatory bulletins, Saudi Arabia (SNSN, King Abdulaziz City for Science and Technology), and Egypt (National Research Institute of Astronomy and Geophysics, Helwan) sources and were relocated after reexamining the P and S arrival times, testing the efficiency of stations used to determine the location of Aqaba events, calculating the average value of V p/V s, and choosing the best crustal model for the study area. The earthquake epicenters are distributed along the eastern side of the Gulf of Aqaba.  相似文献   

16.
Gemsa has been chosen as the site for one of a new generation of power stations along the south-western margin of the Gulf of Suez. This site has been affected by a number of destructive earthquakes (Mw> 5), in addition to large number of earthquakes with magnitudes of less than 5. In this study seismic activities in the region were collected and re-evaluated, and the main earthquake prone zones were identified. It is indicated that this site is affected by the southern Gulf of Suez, northern Red Sea and Gulf of Aqaba source zones. The southern Gulf of Suez source zone is the nearest to the proposed site. The stochastic simulation method has been applied to estimate the Peak GroundAcceleration at the site of the proposed Gemsa power plant. It was noticed that the pseudo-spectral acceleration (PSA) reaches 175 cm/sec2 resulting from the southern Gulf of Suez seismic source. In addition, the response spectrum was conducted with a damping value of 5% of the critical damping, and the predominant period reached 0.1sec at the site. These results should be taken into consideration by civil engineers and decision-makers for designing earthquake resistant structures.  相似文献   

17.
Oxygen profiles were measured in the sediments of the Gulf of Aqaba (Red Sea), an oligotrophic marine system affected by episodic seasonal flash floods and intense aeolian dry deposition. Sediment cores were retrieved from shallow (15–45 m), intermediate (250–561 m) and deep (700 m) water sites of south–north and east–west transects. Dissolved oxygen concentrations were measured simultaneously by using microelectrodes and microoptodes immediately after sampling and after transportation. Oxygen penetration depths were found to increase from 2 to 5 mm at the shallow water sites with sandy permeable sediments to 10–21 mm at the deeper sites with cohesive muddy sediments. This increase corresponds to decrease in oxygen diffusive fluxes at the sediment–water interface and oxygen consumption rates with depth. Oxygen consumption rates exhibit local maxima at the oxic–anoxic sediment boundary, which may be attributed to oxygen reduction coupled to oxidation of dissolved Fe(II) and Mn(II) at deep and intermediate water sites and of hydrogen sulfide at shallow water sites. Microelectrodes and microoptodes measurements of cohesive sediments from deep and intermediate water sites yielded similar results. By comparison, the microoptodes displayed more robust measurements than microelectrodes in sandy near-shore sediments. This was attributed to their flexible fiber structure that is less likely to break or to abruptly displace sand particles. After transportation of sediment cores from Eilat to Beer Sheva followed by ≤?24-h storage, no changes in oxygen fluxes and consumption rates were detected.  相似文献   

18.
Redox transformations of iron in the surface waters of the Gulf of Aqaba, Red Sea, were studied on recurrent cruises from September 2006 to May 2007. Fe(II) concentrations and oxidation kinetics were measured in situ using luminol chemiluminescence. High Fe(II) concentrations of 200-400 pM were recorded in the autumn, followed by low concentrations of 20-130 pM in the winter-spring. A distinct diurnal pattern in Fe(II) concentrations was observed in the autumn with maximum values coinciding with maximum solar irradiance. In situ and in vitro Fe(II) oxidation rates showed temporal and spatial variability that was accounted for by changes in water temperature and pH. Dissolved oxygen was found to be the dominant oxidant in all but one cruise. In situ photoreduction rates (deduced from oxidation rates) were linearly correlated with solar irradiance during the autumn, suggesting that the reducible iron pool was not exhausted even at the strongest irradiances and that it was kept constant throughout the season. Phytoplankton had no discernible influence on Fe(II) production, consumption, or oxidation kinetics. Given the fast oxidation and photoreduction rates of up to 180 pM min−1, the turn-over rates of iron were estimated at 10-30 per day. Such a dynamic Fe redox cycle probably influences the chemical reactivity and bioavailability of iron and may enhance the solubility of the abundant aerosol dust.  相似文献   

19.
Down‐faulting at the north‐west margins of the Gulf of Aqaba is inferred to have triggered a catastrophic sedimentary event at 2.3 ka that killed the Elat fringing coral reef. Whereas segments of the Holocene reef were perfectly fossilized and preserved beneath a veneer of siliciclastic sediments, other segments were abraded, settled by nomads, and later re‐submerged under 4 m of water. Repeated damage triggered by down‐throwing earthquakes degenerate the fringing reefs of the north‐west end of the gulf. Conversely, on the north‐eastern and southern parts of the gulf, where earthquakes uplift the margins, modern reefs are thriving, attached to uplifted fossil reef terraces. Therefore, coastal subsidence moderates the development of fringing coral reefs during the late Holocene sea‐level stand still.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号