首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nearly all of Ethiopia’s agriculture is dependent on rainfall, particularly the amount and seasonal occurrence. Future climate change predictions agree that changes in rainfall, temperature, and seasonality will impact Ethiopia with dramatic consequences. When, where, and how these changes will transpire has not been adequately addressed. The objective of our study was to model how projected climate change scenarios will spatially and temporally impact cereal production, a dietary staple for millions of Ethiopians. We used Maxent software fit with crop data collected from household surveys and bioclimatic variables from the WorldClim database to develop spatially explicit models of crop production in Ethiopia. Our results were extrapolated to three climate change projections (i.e., Canadian Centre for Climate Modeling and Analysis, Hadley Centre Coupled Model v3, and Commonwealth Scientific and Industrial Research Organization), each having two emission scenarios. Model evaluations indicated that our results had strong predictability for all four cereal crops with area under the curve values of 0.79, 0.81, 0.79, and 0.83 for teff, maize, sorghum, and barley, respectively. As expected, bioclimatic variables related to rainfall were the greatest predictors for all four cereal crops. All models showed similar decreasing spatial trends in cereal production. In addition, there were geographic shifts in land suitability which need to be accounted for when assessing overall vulnerability to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural system and food security. Spatially explicit models will be vital for developing early warning systems, adaptive strategies, and policy to minimize the negative impacts of climate change on food production.  相似文献   

2.
The impacts of climate change on agriculture may add significantly to the development challenges of ensuring food security and reducing poverty. We show the possible impacts on maize production in Africa and Latin America to 2055, using high-resolution methods to generate characteristic daily weather data for driving a detailed simulation model of the maize crop. Although the results indicate an overall reduction of only 10% in maize production to 2055, equivalent to losses of $2 billion per year, the aggregate results hide enormous variability: areas can be identified where maize yields may change substantially. Climate change urgently needs to be assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.  相似文献   

3.
Climate change will affect agricultural production by subsistence farms in crop centers of origin, where landraces are conserved in situ. Various strategies for adaptation to climate change have been proposed. In this paper we examine the prospects of what we call the ‘transgenic adaptation strategy’, i.e. the appeal to use transgenic seeds to adapt to climate change, through the lens of smallholder maize farming in Mexico. Landraces are the bedrock of maize production in Mexico. We consider how maize farmers may respond to climate change and the effects of those responses on crop diversity. In this paper, we argue that the promotion of the transgenic adaptation strategy is problematic for biological and social reasons. Smallholder livelihoods in southern Mexico could suffer a disproportionate negative impact if transgenic technology is privileged as a response to climate change. Agroecological and evolutionary approaches to addressing the effects of climate change on smallholder agriculture provides an alternative adaptive strategy.  相似文献   

4.
Climate Change and Agricultural Soils: Impacts and Adaptation   总被引:8,自引:1,他引:7  
This article reviews the current state of knowledge on the response of soils to climate change, and the implications such changes have for agriculture. The article is based on the material reported in the IPCC second assessment report (Watson et al., 1996) and updated with more recent information, where appropriate. The review highlights the importance of understanding the dynamics of soil processes when addressing climate change impacts on agriculture. Rapid soil responses to climate change (e.g. soil water, organic carbon and erodibility) have been widely investigated and reported in the literature. However, it is important that longer-term processes (e.g. pedogenesis) are not ignored by the research community because these have potentially important implications for long-term agricultural land use and are often irreversible. The use of good land management practices, as currently understood, provides the best strategy for adaptation to the impact of climate change on soils. However, it appears likely that farmers will need to carefully reconsider their management options, and land use change is likely to result from different crop selections that are more appropriate to the changing conditions. Perhaps the greatest impact of climate change on soils will arise from climate-induced changes in land use and management.  相似文献   

5.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

6.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

7.
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.Despite a large dispersion of yield changes ranging from −50% to +90%, the median is a yield loss near −11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, −18% median response) than in southern West Africa (Guinean countries, −13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near −15% with most intense warming, highlighting the importance of global warming mitigation.The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region.  相似文献   

8.
In the North China Plain, the grain yield of irrigated wheat-maize cropping system has been steadily increasing in the past decades under a significant warming climate. This paper combined regional and field data with modeling to analyze the changes in the climate in the last 40 years, and to investigate the influence of changes in crop varieties and management options to crop yield. In particular, we examined the impact of a planned adaptation strategy to climate change -“Double-Delay” technology, i.e., delay both the sowing time of wheat and the harvesting time of maize, on both wheat and maize yield. The results show that improved crop varieties and management options not only compensated some negative impact of reduced crop growth period on crop yield due to the increase in temperature, they have contributed significantly to crop yield increase. The increase in temperature before over-wintering stage enabled late sowing of winter wheat and late harvesting of maize, leading to overall 4–6% increase in total grain yield of the wheat-maize system. Increased use of farming machines and minimum tillage technology also shortened the time for field preparation from harvest time of summer maize to sowing time of winter wheat, which facilitated the later harvest of summer maize.  相似文献   

9.
During the last decades, a large number of climate change impact studies on agriculture have been conducted qualitatively and quantitatively in many regions of the Asia-Pacific. Changes in average climate conditions and climate variability will have a significant consequence on crop yields in many parts of the Asia-Pacific. Crop yield and productivity changes will vary considerably across the region. Vulnerability to climate change depends not only on physical and biological response but also on socioeconomic characteristics. Adaptation strategies that consider changes in crop varieties or in the timing of agricultural activities imply low costs and, if readily undertaken, can compensate for some of the yield loss simulated with the climate change scenarios. The studies reviewed here suggest that the regions of Tropical Asia appear to be among the more vulnerable; some areas of Temperate Asia also appear to be vulnerable.  相似文献   

10.
The adaptation of agriculture and forestry to the climate of the twenty-first century supposes that research projects will be conducted cooperatively between meteorologists, agronomists, soil scientists, hydrologists, and modellers. To prepare for it, it is appropriate first of all to study the variations in the climate of the past using extensive, homogenised series of meteorological or phenological data. General circulation models constitute the basic tool in order to predict future changes in climate. They will be improved, and the regionalisation techniques used for downscaling climate predictions will also be made more efficient. Crop simulation models using input data from the general circulation models applied at the regional level ought to be the favoured tools to allow the extrapolation of the major trends on yield, consumption of water, fertilisers, pesticides, the environment and rural development. For this, they have to be validated according to the available agronomical data, particularly the available phenological series on cultivated crops. In addition, climate change would have impact on crop diseases and parasites, as well as on weeds. Very few studies have been carried out in this field. It is also necessary to quantify in a more accurate way the stocks and fluxes of carbon in large forest ecosystems, simulate their future, and assess the vulnerability of the various forest species to a change in climate. This is all the more important in that some propagate species choices must be made in the course of the next ten years in plantations which will experience changed climate. More broadly speaking, we shall have not only to try hard to research new agricultural and forestry practices which will reduce greenhouse gas emissions or promote the storage of carbon, but it will also be indispensable to prepare the adaptation of numerous rural communities for the climate change (with special reference to least developed countries in tropical areas, where malnutrition is a common threat). This can be accomplished with a series of new environmental management practices suited to the new climatic order.  相似文献   

11.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

12.
基于东北玉米区域动力模型的低温冷害预报应用研究   总被引:35,自引:7,他引:35       下载免费PDF全文
在田间试验资料基础上,采用改进的发育模型和分区作物参数,结合前人有关研究成果建立了东北玉米区域动力模型,并利用模型模拟了12站40年 (1961~2000年) 玉米生长发育过程。确定抽雄期延迟天数为低温冷害指标,分析了历史低温冷害年及减产情况。模拟了典型冷害年和40年气候平均的0.25°×0.25°网格点玉米生长发育过程, 探讨了与区域气候模式结合进行低温冷害预报的方法。主要结论有:①玉米发育模型能够较好地模拟玉米发育期和发育期对低温冷害的响应,以抽雄期延迟天数为冷害指标评估的历史冷害发生状况基本符合历史实况。②模型有一定的模拟玉米生长量对低温冷害响应的能力,但还需要更多的试验数据校正品种参数,完善模型。③利用GIS技术,结合区域化的作物参数运行区域作物模型,是作物模型区域化应用的一种解决方案。④东北玉米区域动力模型解释性好,根据确定的害指标,以区域气候模式输出结果驱动玉米模型可以模拟和预测低温冷害,是农业气象灾害预测预报的一个有益的尝试。  相似文献   

13.
Crop yields are affected by climate change and technological advancement. Objectively and quantitatively evaluating the attribution of crop yield change to climate change and technological advancement will ensure sustainable development of agriculture under climate change. In this study, daily climate variables obtained from 553 meteorological stations in China for the period 1961-2010, detailed observations of maize from 653 agricultural meteorological stations for the period 1981-2010, and results using an Agro-Ecological Zones (AEZ) model, are used to explore the attribution of maize (Zea mays L.) yield change to climate change and technological advancement. In the AEZ model, the climatic potential productivity is examined through three step-by-step levels: photosynthetic potential productivity, photosynthetic thermal potential productivity, and climatic potential productivity. The relative impacts of different climate variables on climatic potential productivity of maize from 1961 to 2010 in China are then evaluated. Combined with the observations of maize, the contributions of climate change and technological advancement to maize yield from 1981 to 2010 in China are separated. The results show that, from 1961 to 2010, climate change had a significant adverse impact on the climatic potential productivity of maize in China. Decreased radiation and increased temperature were the main factors leading to the decrease of climatic potential productivity. However, changes in precipitation had only a small effect. The maize yields of the 14 main planting provinces in China increased obviously over the past 30 years, which was opposite to the decreasing trends of climatic potential productivity. This suggests that technological advancement has offset the negative effects of climate change on maize yield. Technological advancement contributed to maize yield increases by 99.6%-141.6%, while climate change contribution was from-41.4% to 0.4%. In particular, the actual maize yields in Shandong, Henan, Jilin, and Inner Mongolia increased by 98.4, 90.4, 98.7, and 121.5 kg hm-2 yr-1 over the past 30 years, respectively. Correspondingly, the maize yields affected by technological advancement increased by 113.7, 97.9, 111.5, and 124.8 kg hm-2 yr-1, respectively. On the contrary, maize yields reduced markedly under climate change, with an average reduction of-9.0 kg hm-2 yr-1. Our findings highlight that agronomic technological advancement has contributed dominantly to maize yield increases in China in the past three decades.  相似文献   

14.
Fulu Tao  Zhao Zhang 《Climatic change》2011,105(3-4):409-432
Projections of future climate change are plagued with uncertainties from global climate models and emission scenarios, causing difficulties for impact assessments and for planners taking decisions on adaptation measure. Here, we developed an approach to deal with the uncertainties and to project the changes of maize productivity and water use in China using a process-based crop model, against a global mean temperature (GMT) increase scale relative to 1961?C1990 values. From 20 climate scenarios output from the Intergovernmental Panel on Climate Change Data Distribution Centre, we adopted the median values of projected changes in monthly mean climate variables for representative stations and driven the CERES-Maize model to simulate maize production under baseline and future climate scenarios. Adaptation options such as automatic planting, automatic application of irrigation and fertilization were considered, although cultivars were assumed constant over the baseline and future. After assessing representative stations across China, we projected changes in maize yield, growing period, evapotranspiration, and irrigation-water use for GMT changes of 1°C, 2°C, and 3°C, respectively. Results indicated that median values of projected decreases in the yields of irrigated maize without (with) consideration of CO2-fertilization effects ranged from 1.4% to 10.9% (1.6% to 7.8%), 9.8% to 21.7% (10.2% to 16.4%), and 4.3% to 32.1% (3.9% to 26.6%) for GMT changes of 1°C, 2°C, and 3°C, respectively. Median values of projected changes in irrigation-water use without (with) consideration of CO2-fertilization effects ranged from ?1.3% to 2.5% (?18.8% to 0.0%), ?43.6% to 2.4% (?56.1% to ?18.9%), and ?19.6% to 2.2% (?50.6% to ?34.3%), which were ascribed to rising CO2 concentration, increased precipitation, as well as reduced growing period with GMT increasing. For rainfed maize, median values of projected changes in yields without (with) consideration of CO2-fertilization effects ranged from ?22.2% to ?1.0% (?10.8% to 0.7%), ?27.6% to ?7.9% (?18.1% to ?5.6%), and ?33.7% to ?4.6% (?25.9% to ?1.6%). Approximate comparisons showed that projected maize yield losses were larger than previous estimates, particularly for rainfed maize. Our study presents an approach to project maize productivity and water use with GMT increases using process-based crop models and multiple climate scenarios. The resultant impact function is fundamental for identifying which climate change level is dangerous for food security.  相似文献   

15.
Increased understanding of the substantial threat climate change poses to agriculture has not been met with a similarly improved understanding of how best to respond. Here we examine likely shifts in crop climates in Sub-Saharan Africa under climate change to 2050, and explore the implications for agricultural adaptation, with particular focus on identifying priorities in crop breeding and the conservation of crop genetic resources. We find that for three of Africa's primary cereal crops – maize, millet, and sorghum – expected changes in growing season temperature are considerable and dwarf changes projected for precipitation, with the warmest recent temperatures on average cooler than almost 9 out of 10 expected observations by 2050. For the “novel” crop climates currently unrepresented in each country but likely extant there in 2050, we identify current analogs across the continent. The majority of African countries will have novel climates over at least half of their current crop area by 2050. Of these countries, 75% will have novel climates with analogs in the current climate of at least five other countries, suggesting that international movement of germplasm will be necessary for adaptation. A more troubling set of countries – largely the hotter Sahelian countries – will have climates with few analogs for any crop. Finally, we identify countries, such as Sudan, Cameroon, and Nigeria, whose current crop areas are analogs to many future climates but that are poorly represented in major genebanks – promising locations in which to focus future genetic resource conservation efforts.  相似文献   

16.
Most African countries struggle with food production and food security. These issues are expected to be even more severe in the face of climate change. Our study examines the likely impacts of climate change on agriculture with a view to propose adaptation options, especially in hard hit regions. We use a crop model to evaluate the impact of various sowing decisions on the water satisfaction index (WSI) and thus the yield of maize crop. The crop model is run for 176 stations over southern Africa, subject to climate scenarios downscaled from 6 GCMs. The sensitivity of these simulations is analysed so as to distinguish the contributions of sowing decisions to yield variation. We compare the WSI change between a 20 year control period (1979–1999) and a 20 year future period (2046–2065) over southern Africa. These results highlight areas that will likely be negatively affected by climate change over the study region. We then calculate the contribution of sowing decisions to yield variation, first for the control period, then for the future period. This contribution (sensitivity) allows us to distinguish the efficiency of adaptation decisions under both present and future climate. In most countries rainfall in the sowing dekad is shown to contribute more significantly to the yield variation and appears as a long term efficient decision to adapt. We discuss these results and additional perspectives in order to propose local adaptation directions.  相似文献   

17.
We evaluated the potential impact of future climate change on spring maize and single-crop rice in northeastern China(NEC) by employing climate and crop models. Based on historical data, diurnal temperature change exhibited a distinct negative relationship with maize yield, whereas minimum temperature correlated positively to rice yield. Corresponding to the evaluated climate change derived from coupled climate models included in the Coupled Model Intercomparison Project Phase 5(CMIP5) under the Representative Concentration Pathway 4.5 scenario(RCP4.5), the projected maize yield changes for three future periods [2010–39(period 1), 2040–69(period 2), and 2070–99(period 3)] relative to the mean yield in the baseline period(1976–2005) were 2.92%, 3.11% and 2.63%, respectively. By contrast, the evaluated rice yields showed slightly larger increases of 7.19%, 12.39%, and 14.83%, respectively. The uncertainties in the crop response are discussed by considering the uncertainties obtained from both the climate and the crop models. The range of impact of the uncertainty became markedly wider when integrating these two sources of uncertainty. The probabilistic assessments of the evaluated change showed maize yield to be relatively stable from period 1 to period 3, while the rice yield showed an increasing trend over time. The results presented in this paper suggest a tendency of the yields of maize and rice in NEC to increase(but with great uncertainty) against the background of global warming, which may offer some valuable guidance to government policymakers.  相似文献   

18.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

19.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

20.
Northeast China is the main crop production region in China, and future climate change will directly impact crop potential yields, so exploring crop potential yields under future climate scenarios in Northeast China is extremely critical for ensuring future food security. Here, this study projected the climate changes using 12 general circulation models (GCMs) under two moderate Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and 6.0) from 2015 to 2050. Then, based on the Global Agro-ecological Zones (GAEZ) model, we explored the effect of climate change on the potential yields of maize and paddy rice in Northeast China during 2015–2050. The annual relative humidity increased almost throughout the Northeast China under two RCPs. The annual precipitation increased more than 400 mm in some west, east, and south areas under RCP 4.5, but decreased slightly in some areas under RCP 6.0. The annual wind speed increased over 2 m/s in the west region. The annual net solar radiation changes varied significantly with latitude, but the changes of annual maximum temperature and minimum temperature were closely related to the terrain. Under RCP 4.5, the average maize potential yield increased by 34.31% under the influence of climate changes from 2015 to 2050. The average rice potential yield increased by 16.82% from 2015 to 2050. Under RCP 6.0, the average maize and rice potential yields increased by 25.65% and 6.34% respectively. The changes of maize potential yields were positively correlated with the changes of precipitation, wind speed, and net solar radiation (the correlation coefficients were > 0.2), and negatively correlated with the changes of relative humidity, minimum and maximum temperature under two RCPs. The changes of rice potential yields were positively correlated with the changes of precipitation (correlation coefficient = 0.15) under RCP 4.5. Under RCP 6.0, it had a slight positive correlation with net solar radiation, relative humidity, and wind speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号