首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Climate change in the coming century will affect biodiversity at many biological levels, ranging from ecosystems to genes. Forecasting the effects of these changes, especially in the context of which species will be restricted to refugia and/or prone to extinction, is taking on increasing importance. Enhanced integration of phylogeography with phylochronology, paleontological and geological data, and climate science (especially taking into account scales of climate change other than orbitally-induced glacial–interglacial cycles) is needed to more fully appreciate the genetic effects of past climate changes, and to help predict future fates of species.  相似文献   

2.
Models that address the impacts of climate change on forests are reviewed at four levels of biological organization: global, regional or landscape, community, and tree. The models are compared for their ability to assess changes in fluxes of biogenic greenhouse gases, land use, patterns of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models have been used to consider more impacts than the other models. The development of landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research needing additional effort are identified: (1) linking socioeconomic and ecologic models; (2) interfacing forest models at different scales; (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes; and (4) relating information from different scales.The U.S. Government right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract DE-AC05-84OR21400.  相似文献   

3.
Large amounts of carbon (C) have been released into the atmosphere over the past centuries. Less than half of this C stays in the atmosphere. The remainder is taken up by the oceans and terrestrial ecosystems. Where does the C come from and where and when does this uptake occur? We address these questions by providing new estimates of regional land-use emissions and natural carbon fluxes for the 1700–2000 period, simultaneously considering multiple anthropogenic (e.g. land and energy demand) and biochemical factors in a geographically explicit manner. The observed historical atmospheric CO2 concentration profile for the 1700 to 2000 period has been reproduced well. The terrestrial natural biosphere has been a major carbon sink, due to changes in climate, atmospheric CO2, nitrogen and management. Due to land-use change large amounts of carbon have been emitted into the atmosphere. The net effect was an emission of 35 Pg C into the atmosphere for the 1700 to 2000 period. If land use had remained constant at its distribution in 1700, then the terrestrial C uptake would have increased by 142 Pg C. This overall difference of including or excluding land-use changes (i.e. 177 Pg C) comes to more than half of the historical fossil-fuel related emissions of 308 Pg C. Historically, global land-use emissions were predominantly caused by the expansion of cropland and pasture, while wood harvesting (for timber and fuel wood) only played a minor role. These findings are robust even when changing some of the important drivers like the extent of historical land-use changes. Under varying assumptions, land-use emissions over the past three centuries could have increased up to 20%, but remained significantly lower than from other sources. Combining the regional land-use and natural C fluxes, North America and Europe were net C sources before 1900, but turned into sinks during the twentieth century. Nowadays, these fluxes are a magnitude smaller than energy- and industry-related emissions. Tropical regions were C neutral prior to 1950, but then accelerated deforestation turned these regions into major C sources. The energy- and industry-related emissions are currently increasing in many tropical regions, but are still less than the land-use emissions. Based on the presented relevance of the land-use and natural fluxes for the historical C cycle and the significance of fossil-fuel emissions nowadays, there is a need for an integrated approach for energy, nature and land use in evaluating possible climate change mitigation policies.  相似文献   

4.
《Climate Policy》2013,13(2-3):129-144
Abstract

Climate change does not yet feature prominently within the environmental or economic policy agendas of developing countries. Yet evidence shows that some of the most adverse effects of climate change will be in developing countries, where populations are most vulnerable and least likely to easily adapt to climate change, and that climate change will affect the potential for development in these countries. Some synergies already exist between climate change policies and the sustainable development agenda in developing countries, such as energy efficiency, renewable energy, transport and sustainable land-use policies. Despite limited attention from policy-makers to date, climate change policies could have significant ancillary benefits for the local environment. The reverse is also true as local and national policies to address congestion, air quality, access to energy services and energy diversity may also limit GHG emissions. Nevertheless there could be significant trade-offs associated with deeper levels of mitigation in some countries, for example where developing countries are dependent on indigenous coal and may be required to switch to cleaner yet more expensive fuels to limit emissions. The distributional impacts of such policies are an important determinant of their feasibility and need to be considered up-front. It follows that future agreements on mitigation and adaptation under the convention will need to recognise the diverse situations of developing countries with respect to their level of economic development, their vulnerability to climate change and their ability to adapt or mitigate. Recognition of how climate change is likely to influence other development priorities may be a first step toward building cost-effective strategies and integrated, institutional capacity in developing countries to respond to climate change. Opportunities may also exist in developing countries to use regional economic organisations to assist in the design of integrated responses and to exploit synergies between climate change and other policies such as those designed to combat desertification and preserve biodiversity.

© 2002 Elsevier Science Ltd. All rights reserved.  相似文献   

5.
Ecosystem changes in floodplains could be a major issue during the twenty-first century as designated habitat areas are affected by climate change and floodplain management options. As part of the RegIS project, a Regional Impact Simulator has been developed to investigate these potential changes. This paper presents the methodologies and results of biodiversity metamodels used within the Regional Impact Simulator for two regions of the UK: East Anglia and North West England. Potential impacts and adaptations to future climate and socio-economic scenarios are analysed for three habitat types in floodplains (saltmarsh, coastal grazing marsh and fluvial grazing marsh) and selected species. An important finding is that management choices, which can be linked to socio-economic futures have a greater potential impact on habitat viability than climate change. The choices society makes will therefore be key to protection and conservation of biodiversity. The analyses also show that coastal grazing marsh is the most vulnerable habitat to sea-level rise, although there is a scope for substituting losses with fluvial grazing marsh. These results indicate that these methods provide a useful approach for assessing potential biodiversity changes at the regional scale, including the effect of different policies.  相似文献   

6.
《Climate Policy》2002,2(2-3):129-144
Climate change does not yet feature prominently within the environmental or economic policy agendas of developing countries. Yet evidence shows that some of the most adverse effects of climate change will be in developing countries, where populations are most vulnerable and least likely to easily adapt to climate change, and that climate change will affect the potential for development in these countries. Some synergies already exist between climate change policies and the sustainable development agenda in developing countries, such as energy efficiency, renewable energy, transport and sustainable land-use policies. Despite limited attention from policy-makers to date, climate change policies could have significant ancillary benefits for the local environment. The reverse is also true as local and national policies to address congestion, air quality, access to energy services and energy diversity may also limit GHG emissions. Nevertheless there could be significant trade-offs associated with deeper levels of mitigation in some countries, for example where developing countries are dependent on indigenous coal and may be required to switch to cleaner yet more expensive fuels to limit emissions. The distributional impacts of such policies are an important determinant of their feasibility and need to be considered up-front. It follows that future agreements on mitigation and adaptation under the convention will need to recognise the diverse situations of developing countries with respect to their level of economic development, their vulnerability to climate change and their ability to adapt or mitigate. Recognition of how climate change is likely to influence other development priorities may be a first step toward building cost-effective strategies and integrated, institutional capacity in developing countries to respond to climate change. Opportunities may also exist in developing countries to use regional economic organisations to assist in the design of integrated responses and to exploit synergies between climate change and other policies such as those designed to combat desertification and preserve biodiversity.  相似文献   

7.
Climate change and land use conversion are global threats to biodiversity. Protected areas and biological corridors have been historically implemented as biodiversity conservation measures and suggested as tools within planning frameworks to respond to climate change. However, few applications to national protected areas systems considering climate change in tropical countries exist. Our goal is to define new priority areas for biodiversity conservation and biological corridors within an existing protected areas network. We aim at preserving samples of all biodiversity under climate change and facilitate species dispersal to reduce the vulnerability of biodiversity. The analysis was based on a three step strategy: i) protect representative samples of various levels of terrestrial biodiversity across protected area systems given future redistributions under climate change, ii) identify and protect areas with reduced climate velocities where populations could persist for relatively longer periods, and iii) ensure species dispersal between conservation areas through climatic connectivity pathways. The study was integrated into a participatory planning approach for biodiversity conservation in Costa Rica. Results showed that there should be an increase of 11 % and 5 % on new conservation areas and biological corridors respectively. Our approach integrates climate change into the design of a network of protected areas for tropical ecosystems and can be applied to other biodiversity rich areas to reduce the vulnerability of biodiversity to global warming.  相似文献   

8.
Ecosystem service provision varies temporally in response to natural and human-induced factors, yet research in this field is dominated by analyses that ignore the time-lags and feedbacks that occur within socio-ecological systems. The implications of this have been unstudied, but are central to understanding how service delivery will alter due to future land-use/cover change. Urban areas are expanding faster than any other land-use, making cities ideal study systems for examining such legacy effects. We assess the extent to which present-day provision of a suite of eight ecosystem services, quantified using field-gathered data, is explained by current and historical (stretching back 150 years) landcover. Five services (above-ground carbon density, recreational use, bird species richness, bird density, and a metric of recreation experience quality (continuity with the past) were more strongly determined by past landcover. Time-lags ranged from 20 (bird species richness and density) to over 100 years (above-ground carbon density). Historical landcover, therefore, can have a strong influence on current service provision. By ignoring such time-lags, we risk drawing incorrect conclusions regarding how the distribution and quality of some ecosystem services may alter in response to land-use/cover change. Although such a finding adds to the complexity of predicting future scenarios, ecologists may find that they can link the biodiversity conservation agenda to the preservation of cultural heritage, and that certain courses of action provide win-win outcomes across multiple environmental and cultural goods.  相似文献   

9.
Few assessments of species vulnerability to climate change used to inform conservation management consider the intrinsic traits that shape species’ capacity to respond to climate change. This omission is problematic as it may result in management actions that are not optimised for the long-term persistence of species as climates shift. We present a tool for explicitly linking data on plant species’ life history traits and range characteristics to appropriate management actions that maximise their capacity to respond to climate change. We deliberately target data on easily measured and widely available traits (e.g. dispersal syndrome, height, longevity) and range characteristics (e.g. range size, climatic/soil niche breadth), to allow for rapid comparison across many species. We test this framework on 1237 plants, categorising species on the basis of their potential climate change risk as related to four factors affecting their response capacity: reproduction, movement capability, abiotic niche specialisation and spatial coverage. Based on these four factors, species were allocated risk scores, and these were used to test the hypothesis that the current protection status under national legislation and related management actions capture species response capacity to climate change. Our results indicate that 20% of the plant species analysed (242 species) are likely to have a low capacity to respond to climate change based on the traits assessed, and are therefore at high risk. Of the 242 high risk species, only 10% (24 species) are currently listed for protection under conservation legislation. Importantly, many management plans for these listed species fail to address the capacity of species to respond to climate change with appropriate actions: 70% of approved management plans do not include crucial actions which may improve species’ ability to adapt to climate change. We illustrate how the use of easily attainable traits associated with ecological and evolutionary responses to changing environmental conditions can inform conservation actions for plant species globally.  相似文献   

10.
Environmental change in grasslands: Assessment using models   总被引:7,自引:0,他引:7  
Modeling studies and observed data suggest that plant production, species distribution, disturbance regimes, grassland biome boundaries and secondary production (i.e., animal productivity) could be affected by potential changes in climate and by changes in land use practices. There are many studies in which computer models have been used to assess the impact of climate changes on grassland ecosystems. A global assessment of climate change impacts suggest that some grassland ecosystems will have higher plant production (humid temperate grasslands) while the production of extreme continental steppes (e.g., more arid regions of the temperate grasslands of North America and Eurasia) could be reduced substantially. All of the grassland systems studied are projected to lose soil carbon, with the greatest losses in the extreme continental grassland systems. There are large differences in the projected changes in plant production for some regions, while alterations in soil C are relatively similar over a range of climate change projections drawn from various General Circulation Models (GCM's). The potential impact of climatic change on cattle weight gains is unclear. The results of modeling studies also suggest that the direct impact of increased atmospheric CO2 on photosynthesis and water use in grasslands must be considered since these direct impacts could be as large as those due to climatic changes. In addition to its direct effects on photosynthesis and water use, elevated CO2 concentrations lower N content and reduce digestibility of the forage.  相似文献   

11.
《大气与海洋》2013,51(1):117-138
Abstract

Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low‐frequency variability which can look “trend‐like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone‐depleting substances and greenhouse gases on both ozone and climate. While the radiative‐chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer‐Dobson circulation) could have a first‐order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry‐climate models have recently emerged as useful tools for addressing these questions, as they provide a self‐consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change.  相似文献   

12.
B. H. Walker 《Climatic change》1991,18(2-3):301-316
The ecological outcome of atmospheric and climate change will depend on the rate of such change relative to the rate at which the biota can respond. Change in community structure and composition, and in landscapes and soils, will mostly come about through changes in the frequencies of extreme events. Much of the Southern Hemisphere has incomplete vegetative cover and landscape dynamics (horizontal redistribution of water and nutrients) is a primary ecological determinant which will be significantly altered under a shifting rainfall regime. Predicting vegetation change requires resolving the problems of lag effects, extreme events, the direct effects of increased CO2, secondary effects (e.g. changed fire regimes) and interactive effects of spatial variation. Some Southern Hemisphere examples are presented. Changes in fauna will depend mostly on changes to habitat. In the case of many invertebrate pest species, however, including disease vectors, an increase in minimum temperatures will have significant effects on their distribution and abundance (e.g. locusts, screw-worm fly, the cotton pest Heliothus, tsetse fly, malaria).  相似文献   

13.
This paper investigates how the notion of future is represented in a large corpus of English-language blogs related to climate change, with an overarching interest in exploring to what extent the perspectives of gloom-and-doom versus more positive perspectives of a sustainable society are represented. We address the following questions: (1) How are representations of the future expressed linguistically in public debates related to climate change? (2) What meanings do the representations convey? Our principal contribution is a set of nine meaning categories that characterize different representations of the future: the categories were derived by following a corpus-assisted discourse analysis approach. Within these categories, the large presence of characterisations related to sustainability, as well as frequent positive value-laden characterisations, are noteworthy. Representations reflect various perspectives of a future for humanity, for nature, and for countries as well as for economies. Further, we have found that when climate change is viewed as a threat, it is in relation to nature, humans and security, while it is seen as an opportunity for growth in business and industry. The results provide knowledge on how people conceive the possible impacts of global climate and environmental change within two broad perspectives of a “gloom-and-doom” versus a “bright” future. This may contribute to an improved basis for political decision making on measures in order to avoid dangerous consequences as well as to encourage engagement in the shift toward a low-carbon future.  相似文献   

14.
The European north is increasingly affected by changes in climate and climate variability. These changes and their causes are global in scope but specific impacts vary considerably between different regions. Recent incidents and events show that forest-resource based regions have difficulties in alleviating adverse effects of these changes. Also, the future socio-economic impact is to date unexplored. Norrbotten in Sweden, Lappi in Finland and Arkhangelsk oblast in Russia are regions that differ significantly in terms of their socio-economic characteristics and capacities. A modified employment multiplier model is used to predict future changes. Scenarios of changing forest resources provide quantitative estimations of the sensitivity of regional employment. These estimates are used to assess and discuss the adaptive capacities of the regions. Results show that Arkhangelsk oblast is more vulnerable to climate variability than Norrbotten and Lappi. This is due to the continued dependency on natural resources in combination with different capacities to counteract negative effects or to take advantage of the opportunities offered by climate change in this region.  相似文献   

15.
Climate change is already affecting species and their distributions. Distributional range changes have occurred and are projected to intensify for many widespread plants and animals, creating associated risks to many ecosystems. Here, we estimate the climate change-related risks to the species in globally significant biodiversity conservation areas over a range of climate scenarios, assessing their value as climate refugia. In particular, we quantify the aggregated benefit of countries’ emission reduction pledges (Intended Nationally Determined Contributions and Nationally Determined Contributions under the Paris Agreement), and also of further constraining global warming to 2 °C above pre-industrial levels, against an unmitigated scenario of 4.5 °C warming. We also quantify the contribution that can be made by using smart spatial conservation planning to facilitate some levels of autonomous (i.e. natural) adaptation to climate change by dispersal. We find that without mitigation, on average 33% of each conservation area can act as climate refugium (or 18% if species are unable to disperse), whereas if warming is constrained to 2 °C, the average area of climate refuges doubles to 67% of each conservation area (or, without dispersal, more than doubles to 56% of each area). If the country pledges are fulfilled, an intermediate estimate of 47–52% (or 31–38%, without dispersal) is obtained. We conclude that the Nationally Determined Contributions alone have important but limited benefits for biodiversity conservation, with larger benefits accruing if warming is constrained to 2 °C. Greater benefits would result if warming was constrained to well below 2 °C as set out in the Paris Agreement.  相似文献   

16.
Global change increasingly threatens nature, endangering the ecosystem services human wellbeing depends upon. Biodiversity potentially mediates these impacts by providing resilience to ecosystems. While biodiversity has been linked to resilience and ecosystem service supply on smaller scales, we lack understanding of whether mediating interactions between biodiversity and anthropogenic drivers are global and ubiquitous, and how they might differ between systems. Here, we examine the potential for biodiversity to mediate anthropogenic driver-ecosystem service relationships using global datasets across three distinct systems: mountains, islands and deltas. We found that driver-ecosystem service relationships were stronger where biodiversity was more intact, and weaker at higher species richness, reflecting the negative correlation between intactness and richness. Mediation was most common in mountains, then islands, then deltas; reducing with anthropogenic impact. Such patterns were found across provisioning and regulating ecosystem services, and occurred most commonly with climate change and built infrastructure. Further, we investigated the contribution of biodiversity and abiotic and anthropogenic drivers to ecosystem services. Ecosystem service supply was associated with abiotic and anthropogenic drivers alongside biodiversity, but all drivers were important to different ecosystem services. Our results empirically show the importance of accounting for the different roles that biodiversity plays in mediating human relationships with nature, and reinforce the importance of maintaining intact biodiversity in ecosystem functioning.  相似文献   

17.
Deepak K. Ray 《Climatic change》2013,119(3-4):775-783
To prevent the loss of biodiversity in northern Central America, which is one of 34 global biodiversity hotspots, the Mesoamerican Biological Corridor, a network of protected parks and reserves has been proposed. While on-going deforestation to croplands and pastures outside the protected regions is likely to effect the dry season precipitation over the regenerated and extant forests in the proposed protected regions, global climate change driven precipitation changes may also be a significant factor, at least at some locations. This study compares the effects of land cover change to the effects of elevated greenhouse gas concentrations on precipitation in the proposed areas of the Mesoamerican Biological Corridor network. Using 5 consecutive dry season simulations of the effects of land cover change that included dry, wet and normal years, and using statistically downscaled global climate model (GCM) precipitation from the fourth assessment report (AR4), a larger expanse of the proposed protected regions was found more sensitive to precipitation decreases due to land cover changes. Two specific protected regions however stand out: the Maya Highlands and some areas of the Maya lowlands that were more sensitive to global climate change driven precipitation decreases. In these protected regions it is likely that irrespective of local policies the climate change signal would dominate.  相似文献   

18.
In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  相似文献   

19.
By using the improved regional climate model (BCC_RegCM1.0), a series of modeling experiments are undertaken to investigate the impacts of historical land-use changes (LUCs) on the regional climate in China. Simulations are conducted for 2 years using estimated land-use for 1700, 1800, 1900, 1950, and 1990. The conversion of land cover in these periods was extensive over China, where large areas were altered from forests to either grass or crops, or from grasslands to crops. Results show that, since 1700, historical LUCs have significant effects on regional climate change, with rainfall increasing in the middle and lower reaches of the Yangtze River Basin, Northwest China, and Northeast China, but decreasing by different degrees in other regions. The air temperature shows significant warming over large areas in recent hundred years, especially from 1950 to 1990, which is consistent with the warming caused by increasing greenhouse gases. On the other hand, historical LUCs have obvious effects on mean circulation, with the East Asian winter and summer monsoonal flows becoming more intensive, which is mainly attributed to the amplifled temperature difference between ocean and land due to vegetation change. Thus, it would be given more attention to the impacts of LUCs on regional climate change.  相似文献   

20.
Adapting conservation policy to the impacts of climate change has emerged as a central and unresolved challenge. In this paper, we report on the results of 21 in-depth interviews with biodiversity and climate change adaptation experts on their views of the implications of climate change for conservation policy. We find a diversity of views across a set of topics that included: changing conservation objectives, conservation triage and its criteria, increased management interventions in protected areas, the role of uncertainty in decision-making, and evolving standards of conservation success. Notably, our findings reveal active consideration among experts with some more controversial elements of policy adaptation (including the role of disturbance in facilitating species transitions, and changing standards of conservation success), despite a comparative silence on these topics in the published literature. Implications of these findings are discussed with respect to: (a) identifying future research and integration needs and (b) providing insight into the process of policy adaptation in the context of biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号