首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Up to now subsurface information permitted the delineation of the top of the Triassic salt, all throughout the Cantabro–Navarro domain, although little was known on the location and geometry of its base and thus on the estimation of the total salt thickness. A 3D-gravity inversion scheme combined with a 3D analytic method has been conducted to map out the geometry of the main salt structures of the basin. The gravity modeling results have been constrained by well log information and available geological and reflection seismic data. The combined 3D scheme integrated with available geological and geophysical data has allowed us to obtain the geometry of the main diapirs that characterize the central and marginal regions of the basin.From our interpretation, the Salinas de Añana diapir has almost vertical flanks and can be divided into two different parts, one of them forming a lateral overhang of the main body.The Salinas de Oro diapir has near vertical flanks and a main axis in the N–S direction. Also, the anomaly is rather more extensive than the outcrop of the diapir, which implies an important expansion of non-outcropping salt in this area. Like the Hoz-Sobrón diapir, the Salinas de Ollo diapir is long and narrow. stretching in the NW–SE direction, which includes three important highs, plus an intense zone of salt migration.The Estella and Alloz diapirs crop out individually in spite of being connected at depth. Also two non-outcropping salt domes have been detected to the south of Atauri that, like the Estella diapir, are related to the thrust front. We point out the gravity signature of the Murguia diapir, which shows an intense gravity high probably due to the presence of high-density rocks in the cap rock or more probably due to the existence of Triassic volcanites of ophitic texture pinched-off into the diapir.  相似文献   

2.
实验以莺歌海底辟构造为典型实例设计3组砂箱物理模型,探讨弧形弥散性基底走滑与上覆同构造沉积对底辟构造样式及演化过程的影响。砂箱物理模拟表明:物质变形主要集中在弥散性剪切带内、且断裂特征与底辟带形成演化具有一定耦合性。底辟带断裂欠发育、以塑性应变为主,仅在底辟翼部和顶部分别形成小型逆冲断层和放射状裂隙;但底辟带外缘普遍发育高角度弥散性走滑断裂体系。沿弧形走滑剪切方向,底辟物质斜向生长由倾向外弧逐渐转变为倾向内弧,导致其平面上为非对称结构形态。同构造沉积地层与底辟相互作用控制了底辟生长结构及上覆地层的变形,底辟通过逐渐减小刺穿以响应上覆沉积载荷的增加。基于比例模型模拟结果与莺歌海盆地典型底辟带构造特征具有一定相似性,揭示出莺歌海盆地底辟构造及分布特征受红河断裂带弥散性走滑与同构造沉积过程共同控制。  相似文献   

3.
Understanding intrasalt structure may elucidate the fundamental kinematics and, ultimately, the mechanics of diapir growth. However, there have been relatively few studies of the internal structure of salt diapirs outside the mining industry because their cores are only partly exposed in the field and poorly imaged on seismic reflection data. This study uses 3D seismic reflection and borehole data from the São Paulo Plateau, Santos Basin, offshore Brazil to document the variability in intrasalt structural style in natural salt diapirs. We document a range of intrasalt structures that record: (i) initial diapir rise; (ii) rise of lower mobile halite through an arched and thinned roof of denser, layered evaporites, and emplacement of an intrasalt sheet or canopy; (iii) formation of synclinal flaps kinematically linked to emplacement of the intrasalt allochthonous bodies; and (iv) diapir squeezing. Most salt walls contain simple internal anticlines. Only a few salt walls contain allochthonous bodies and breakout-related flaps. The latter occur in an area having a density inversion within the autochthonous salt layer, such that upper, anhydrite-rich, layered evaporites are denser than lower, more halite-rich evaporites. We thus interpret that most diapirs rose through simple fold amplification of internal salt stratigraphy but that locally, where a density inversion existed in the autochthonous salt, Rayleigh–Taylor overturn within the growing diapir resulted in the ascent of less dense evaporites into the diapir crest by breaching of the internal anticline. This resulted in the formation of steep salt-ascension zones or feeders and the emplacement of high-level intrasalt allocthonous sheets underlain by breakout-related flaps. Although regional shortening undoubtedly occurred on the São Paulo Plateau during the Late Cretaceous, we suggest this was only partly responsible for the complex intrasalt deformation. We suggest that, although based on the Santos Basin, our kinematic model may be more generally applicable to other salt-bearing sedimentary basins.  相似文献   

4.
We compared microstructures of Late Pre-Cambrian to Early Cambrian Ara Salt diapirs from the deep subsurface (3.5–5 km) of the South Oman Salt Basin and from surface-piercing salt domes of the Ghaba Salt Basin. Laterally, these basins are approximately 500 km apart but belong to the same tectono-sedimentary system. The excellent data situation from both wells and outcrops allows a unique quantification of formation and deformation mechanisms, spanning from sedimentation to deep burial, and via re-activated diapir rise to surface piercement. Microstructures of gamma-irradiated and etched thin sections indicate dislocation creep and fluid-assisted grain boundary migration as the main deformation mechanisms operating in the deep subsurface. Microstructures from the surface are characterised by large ‘old’ subgrain-rich crystals. These ‘old’ grains are partly replaced by ‘new’ subgrain-free and subgrain-poor crystals, which show gamma irradiation-decorated growth bands and fibrous microstructures, indicative of pressure solution creep and static recrystallisation, most likely due to surface piercement and exposure. Using subgrain size piezometry, the maximum differential stresses for the subsurface salt is 1.7 MPa and those for the surface-piercing salt is 3.4 MPa, the latter value displaying the high stress conditions in the diapir ‘stem’ as the salt rises on its way to the surface.  相似文献   

5.
下刚果盆地具有巨大的油气资源和潜力,盐构造控制着油气成藏和分布。其盐岩流动的不规律性,增加了盐构造的形成演化和演化期次分析的难度,前人主要通过平衡剖面恢复的方法对断裂等构造形态进行定量恢复,但对盐构造形成演化过程的认识及变形期次刻画的准确性明显不足。本文基于数值模拟手段,通过沉积地层的分时期加载方法,正演了下刚果盆地的构造演化过程,探讨并明确了盐构造的演化阶段。数值模拟结果表明,下刚果盆地盐构造的形成主要分为3个阶段:盐岩初始流动阶段、盐构造形成阶段和构造稳定阶段。形成底辟构造的主要时期是古新世-中新世。其中,古新世-渐新世开始形成底辟构造,中新世多个大规模底辟构造形成,且该时期是盐构造活动最强烈时期。在此基础上进一步完成了下刚果盆地盐构造活动变形与重力作用流动、上覆沉积地层厚度不均一以及沉积扇体的进积作用关系分析。  相似文献   

6.
Roger Bateman 《Tectonophysics》1984,110(3-4):211-231
Only bodies of magma with a high crystal content and partially molten (crustal) country rocks can ascend as diapirs; once such an envelope is pierced, the diapiric ascent of the pluton is arrested by the high viscosity of a solid aureole. Deformation by shortening of the carapace of these bodies may lead to the expulsion of a magma with a relatively low crystal content, which may then continue ascent via fractures and dykes.

The details of the mechanisms of granitoid magma segregation are still unknown, but it appears that many magmas hegin their ascent through the crust as mushes with at least 50% melt, and that such magmas are rheologically able to ascend through a thickness of crust. This ascent mechanism explains the dearth of structures attributable to the ascent of granitoids, in contrast to the abundance of structures that developed during their final emplacement.

When a magma becomes too crystalline (melt < 25%) to continue its ascent via dykes, it is immobilised. At approximately this stage, a hydrous magma may become saturated with water and release fluids into the aureole, making it particularly susceptible to deformation. Magma that continues to arrive at this level is also immobilised, and the pluton grows as a ballooning diapir. These characteristically deform themselves and their aureoles by bulk shortening.

Magmas that are able to ascend to shallow depths, largely by virtue of lower water contents and higher initial temperatures, tend to become finally accommodated by such brittle processes as stoping and cauldron subsidence. High level intrusions lend to be tabular, are also fed by dykes or conduits, and assemble in tabular batholiths.  相似文献   


7.
Large sedimentary dykes, which penetrate down through their host sediments for several metres, are described from the Late Precambrian Dalradian sediments of Islay in the southwest Scottish Highlands. The sediments and their neptunian dykes have suffered a single penetrative deformation which produced a slaty cleavage during the evolution of the Islay nappe. Ratios of the three principal finite strains are calculated for the bulk or large-scale, homogeneous deformation of the sediments and their neptunian dykes using the method of Borradaile and Johnson (1973) and a new, more general method. Since the neptunian dykes result from the infilling of fractures in already consolidated sediments, subsequent considerable volume changes are unlikely to have occurred. Accepting constant volume post-diagenetic deformation the bulk tectonic strain is shown to have, in round figures: 70% shortening normal to slaty cleavage and extensions of 50% and 120% within the cleavage. The deformation accompanying the slaty cleavage lies within the field of true flattening.  相似文献   

8.
The Salinas de Añana diapir is located in the Basque-Cantabrian basin part of the great evaporite basin, along with the Gulf of Mexico and the Central European basin, when the fragmentation of Pangea started. The evolution of these basins can only be achieved by understanding the control of salt in the sedimentary and tectonic evolution of these basins.Sedimentation began with clastic Buntsandstein sediments and minor Muschelkalk limestones. Subsequent Keuper evaporites are the bottom of sedimentary cover constituted by Jurassic limestones and marls, a clastic Lower Cretaceous and an alternant limestone and marl Upper Cretaceous, whose deposition has been conditioned by salt tectonics. The emplacement of salt extends from the Aptian until now, favored by the duplication of the salt thickness associated with the thrust of Sierra Cantabria, so it is an excellent example to study changes in the regime of intrusion along the time. The geodynamic evolution of the Salinas de Añana diapir was determined through the interpretation of 45 reprocessed seismic lines, along with information from three wells. Migration of the salt in this diapir, conditioned by N120E and N30E pre-Alpine basement lineations, was determined using time isopach maps of the various rock layers. Vertical evolution of the diapir was determined through the reconstruction of a north-south section at various geologic times by flattening the respective seismic horizons. A minimum of salt flow into the diapir coincides with a minimum rate of sedimentation during the Turonian. Similarly, maximum flows of salt into the diapir occurred during the Coniacian and Lower Santonian and again from the end of the Lower Miocene to the present, coinciding with maximum rates of sedimentation during these times. In the Tertiary, probably during the Oligocene, the diapir was displaced to the south by the Sierra Cantabria thrust, maintaining the contact between the evaporites of diapir and the same evaporites of the lower block. Since the Oligocene, the salts of the lower block migrated towards and into the diapir, deforming the trace of the overthrust.  相似文献   

9.
The distribution of strain within and around gravitationally produced diapiric structures was studied through the use of experimental models which were deformed in a large-capacity centrifuge. A new method of model construction was developed which is equivalent to building the model of initially square 1-mm elements. After deformation the elements assume shapes which approximate parallelograms and their finite strains can easily be calculated. If several initially identical models are deformed to different extents, the finite strain states of an element in each of the models define points on the deformation path of that element. The deformation path can be used to make estimates of the nature of the internal fabric which would be expected in the equivalent element of the natural structure.This method was applied to the study of the finite strain in diapiric ridges. The models demonstrate that the highest strain is always in the region above the diapir. Within the diapir initial vertical stretching is followed by vertical flattening. Large portions of the structure can be seen to suffer what would in natural examples be called polyphase deformation, even though all of the deformation was due to a single buoyant overturn of unstable density stratification. The strain patterns within the models support the contention that in salt diapirs the buoyant salt has a lower viscosity than the overlying sediments, but that in mantled gneiss domes the reverse is true.  相似文献   

10.
Thick-skinned contractional salt structures are widely developed in the western Kuqa depression, northern Tarim basin. To understand the mechanisms that govern the development of these structures, physical experiments are conducted and the results show that they are largely governed by the activities of basement faults and the forming of paleo-uplifts and basement slopes. The model materials in this study are dry sand, vaseline and plasticene (or hard foam), simulating the suprasalt, salt, and subsalt layers respectively. The experiments show that, due to the activities of basement faults and the forming of the paleo-uplifts, salt bodies usually accumulate and thicken significantly on the middle top of the paleo-uplifts which are constrained by the pre-exiting boundary faults. The development of large-scale thrust faults and salt nappes is favored by the basement slops with larger dips. The experiments also conclude that differential structural deformation could occur between the subsalt and suprasalt layers because of the presence of salt layers. Their geometries and the locations of structural highs are different, despite of the great similarities in the uplifted areas. The pierced salt diapir is not observed in the experiments, which indicates that the contractional shortening does not effectively accelerate the development of the salt diapir.  相似文献   

11.
文中构建了两组构造物理实验,对存在先存被动盐底辟构造的含盐盆地的厚皮挤压构造演化特征进行模拟,研究揭 示了库车坳陷西段秋里塔格构造带新生代盐相关构造演化过程。实验结果表明,同构造沉积速率对库车坳陷西段秋里塔格 构造带博孜-却勒区域(西段) 和秋里塔格-克拉苏区域(东段) 盐相关构造横向分段差异变形具有重要的控制影响作 用。在挤压过程中,博孜-却勒区域慢速同构造沉积使得先存被动盐底辟北翼(拜城凹陷南翼) 向南逆冲到底辟南翼之 上,并促使却勒盐推覆体和米斯坎塔克盐背斜形成;而秋里塔格-克拉苏区域快速同构造沉积使得先存被动盐底辟北翼快 速下沉,而其南翼在挤压应力作用下向北逆冲到底辟北翼(拜城凹陷南翼) 之上,形成南秋里塔格盐背斜。  相似文献   

12.
盐动力层序是指被动盐底辟周缘发育的一套角度不整合地层,是识别盐盆地早期被动底辟的标识。库车地区盐构造由于被上新世区域大规模挤压事件显著破坏,其古新世–中新世的早期演化过程尚存在争议。本文首次将盐动力层序的研究方法运用在库车地区盐构造研究中,并通过对库车褶冲带的博孜敦盐底辟进行野外观察、地层恢复、地震解译后发现,库车地区博孜敦盐底辟南西翼渐新统–中新统发育一套与盐底辟活动相关的沉积层序,小层序之间以角度不整合为界,但随着远离底辟地层之间的接触关系很快变为整合接触,符合直立状复合型盐动力层序的模型。由此认为,库车地区早期被动盐底辟发育,盐构造的演化变形可分为两个期次:早期被动底辟期(渐新世–上新世早期)与后期挤压改造期(上新世–现今)。通过对比物理模拟结果与地震资料解译结果认为,库车地区早期被动底辟作用很可能受控于始新世以来的冲积扇沉积加载作用。  相似文献   

13.
Konarsiah salt diapir is situated in the Simply Folded Zone of the Zagros Mountain, south Iran. Eight small permanent brine springs emerge from the Konarsiah salt body, with average total dissolved solids of 326.7 g/L. There are numerous brackish to saline springs emerging from the alluvial and karst aquifers adjacent to the diapir. Concerning emergence of Konarsiah diapir in the study area, halite dissolution is the most probable source of salinity in the adjacent aquifers. However, other sources including evaporation and deep brines through deep Mangerak Fault are possible. The water samples of the study area were classified based on their water-type, salinity, and the trend of the ions concentration curves. The result of this classification is in agreement with the hydrogeological setting of the study area. The hydrochemical and isotopic evaluations show that the groundwater samples are the result of mixing of four end members; Gachsaran sulfate water, Sarvak and Asmari carbonate fresh waters, and diapir brine. The molar ratios of Na/Cl, Li/Cl, Br/Cl, and SO4/Cl; and isotopic signature of the mixed samples justify a groundwater mixing model for the aquifers adjacent to the salt diapir. The share of brine in each adjacent aquifer was calculated using Cl mass balance. In addition, concentrations of 34 trace elements were determined to characterize the diapir brine and to identify the possible tracers of salinity sources in the mixed water samples. B, Mn, Rb, Sr, Cs, Tl, and Te were identified as trace elements evidencing contact of groundwater with the salt diapir.  相似文献   

14.
Detailed geologic mapping, structural analysis, field cross-sections, new dating based on planktonic foraminifera, in addition to gravity signature of Lorbeus diapir, are used to characterize polyphase salt diapirism. This study highlights the role of inherited faulting, which controls and influences the piercement efficiency and the style and geometry of the diapir; and also the localization of evaporite early ascent displaying diapiric growth during extension. Salt was extruded along the graben axis developed within extensional regional early Cretaceous tectonic associated with the North African passive margin evolution. Geologic data highlight reactive diapirism during Albian time (most extreme extension period) and passive diapirism during the late Cretaceous post-rift stage. Northeastern Maghreb salt province gives evidences that contractional deformations are not associated with significant diapirism. During shortening, the initial major graben deforms as complex anticlines where diapirs are squeezed and pinched from their feeding.  相似文献   

15.
Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sites in lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptunian dykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitational instabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.  相似文献   

16.
库车前陆冲断带西部古近系奥奇克盐底辟是中国最典型的盐底辟构造,可作为盐构造研究的天然实验室.本文在前人研究的基础上,通过详细的野外填图,同时辅以遥感解译、地震解释和合成孔径雷达干涉测量(InSAR)技术,探讨了奥奇克盐底辟盐喀斯特地貌特征,并分析了其形成机制及流变模式.奥奇克盐底辟表面盐喀斯特构造发育,在风化面上可见大...  相似文献   

17.
The influence of four parameters (sedimentation rate, viscosity of salt, stratigraphic location of the anhydrite layer within the salt layer, and the perturbation width) on salt supply to down-built diapirs and its entrainment capacity are studied systematically in numerical models. Model results show that these four parameters affect salt supply, and the evolution history of a salt diapir. As such, these parameters strongly influence the style and the amount of entrainment of dense inclusions into a diapir. In active diapirs (i.e. unburied diapirs), salt supply increases with increasing sedimentation rate whereas it decreases with an increase in salt viscosity. Diapirs initiating from wide perturbation provide more salt supply to feed the diapir. Presence and initial stratigraphic location of any denser layer (e.g. an anhydrite layer) within a salt layer also affects salt supply. When lateral forces are negligible, salt supply into a diapir depends on these four parameters, which directly control the entrainment of any embedded anhydrite layer into the diapir.  相似文献   

18.
Delta fronts are often characterized by high rates of sediment supply that result in unstable slopes and a wide variety of soft‐sediment deformation, including the formation of overpressured and mobile muds that may flow plastically during early burial, potentially forming mud diapirs. The coastal cliffs of County Clare, western Ireland, expose Pennsylvanian (Namurian) delta‐front deposits of the Shannon Basin at large scale and in three dimensions. These deposits include decametre‐scale, internally chaotic mudstone masses that clearly impact the surrounding sedimentary strata. Evidence indicates that these were true mud (unlithified sediment) diapirs that pierced overlying strata. This study documents a well‐exposed ca 20 m tall mud diapir and its impact on the surrounding mouth‐bar deposits of the Tullig Cyclothem. A synsedimentary fault and associated rollover dome, evident from stratal thicknesses and the dip of the beds, define one edge of the diapir. These features are interpreted as recording the reactive rise of the mud diapir in response to extensional faulting along its margin. Above the diapir, heterolithic sandstones and siltstones contain evidence for the creation of localized accommodation, suggesting synsedimentary filling, tilting and erosion of a shallow sag basin accommodated by the progressive collapse of the diapir. Two other diapirs are investigated using three‐dimensional models built from ‘structure from motion’ drone imagery. Both diapirs are interpreted to have grown predominantly through passive rise (downbuilding). Stratal relationships for all three diapirs indicate that they were uncompacted and fluid‐rich mud beds that became mobilized through soft‐sediment deformation during early burial (i.e. <50 m, likely <10 m depth). Each diapir locally controlled the stratigraphic architecture in the shallow subsurface and potentially influenced local palaeocurrents on the delta. The mud diapirs studied herein are distinct from deeper ‘shale diapirs’ that have been inferred from seismic sections worldwide, now largely disputed.  相似文献   

19.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

20.
渤海海域莱州湾凹陷盐构造成因探讨   总被引:5,自引:4,他引:1  
通过分析莱州湾凹陷盐构造特征,盐构造形成动力条件,探讨莱州湾凹陷盐构造成因,讨论了走滑背景下盐岩活动特点。分析表明,莱州湾凹陷盐层构造发育刺穿性盐株和枕状底辟,欠压实、超压破裂、潜伏走滑断层和楔形体的重力扩张促使了莱州湾凹陷盐岩早期流动;渐新世右行走滑阶段,走滑压扭作用下形成刺穿盐株;盐构造活动可分为沙三末期-沙一段沉积期盐流动阶段、中晚渐新世东营沉积时期盐刺穿阶段、中新世-第四纪盐构造再次活化三个阶段。走滑断裂作用下盐岩以流动为主,发育典型的刺穿型盐底辟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号