首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of projected global climate change due to a doubling of atmospheric CO2 on water temperatures in five streams in Minnesota was estimated using a deterministic heat transport model. The model calculates heat exchange between the atmosphere and the water and is driven by climate parameters and stream hydrologic parameters. The model is most sensitive to air temperature and solar radiation. The model was calibrated against detailed measurements to account for seasonally variable shading and wind sheltering. Using climate projections from the GISS, GFDL and OSU GCMs as input; stream temperature simulations predict a warming of freely flowing river reaches by 2.4 °C to 4.7 °C when atmospheric CO2 doubles. In small shaded streams water temperatures are predicted to rise by an additional 6 °C in summer if trees along stream banks should be lost due to climate change or other human activities (e.g. logging). These projected water temperature changes have significant consequences for survival and growth of fishes. Simulation with the complete heat budget equations were also used to examine simplified water temperature/air temperature correlations.  相似文献   

2.
To simulate effects of projected climate change on water temperature characteristics of small lakes in the contiguous U.S., a deterministic, one-dimensional year-round water temperature model is applied. In cold regions the model simulates ice and snow cover on a lake. The lake parameters required as model input are surface area, maximum depth, and Secchi depth as a measure of radiation attenuation and trophic state. The model is driven by daily weather data. Weather records from 209 stations in the contiguous U.S. for the period 1961–1979 were used to represent present climate conditions. The projected climate change owing to a doubling of atmospheric CO2 was obtained from the output of the Canadian Climate Center General Circulation Model. The simulated water temperature and ice characteristics are related to the geometric and trophic state lake characteristics and to geographic location. By interpolation, the sensitivity of lake water temperature characteristics to latitude, longitude, lake geometry and trophic status can therefore be quantified for small lakes in the contiguous U.S. The 2× CO2 climate scenario is projected to increase maximum and minimum lake surface temperatures by up to 5.2°C. (Maximum surface water temperatures in lakes near the northern and the southern border of the contiguous U.S. currently differ by up to 13°C.) Maximum temperature differences between lake surface and lake bottom are projected to increase in average by only 1 to 2°C after climate warming. The duration of seasonal summer stratification is projected to be up to 66 days longer under a 2×CO2 climate scenario. Water temperatures of less than 8°C are projected to occur on lake bottoms during a period which is on the order of 50 days shorter under a 2×CO2 climate scenario. With water temperature change projected to be as high as 5.2°C, ecological impacts such as shifts in species distributions and in fish habitat are most likely. Ice covers on lakes of northern regions would also be changed strongly.  相似文献   

3.
A deterministic heat transport model was developed to calculate stream water temperatures downstream of reservoir outlets (tailwaters) and groundwater sources. The model calculates heat exchange between the atmosphere, the water and the sediments and is driven by climate and stream hydrologic parameters. Past and projected climate conditions were used as input to the stream water temperature model. To produce a projected future weather scenario, output from the Columbia University Goddard Institute for Space Studies (GISS) global circulation model (GCM) for a doubling of atmospheric CO2 were used to adjust past (1955–1979) weather parameters. Stream reach lengths, within which water temperatures are suitable for survival or good growth of 28 fish species, were determined for four selected streams. Several alternative upstream inflow conditions were chosen: Discharges from surface (epilimnion) and bottom (hypolimnion) outlets of reservoirs, and two groundwater inflow scenarios. By applying water temperature criteria for fish survival and good growth (Stefanet al., 1993) to simulated stream temperatures, it was possible to estimate stream lengths with suitable habitat. When simulated suitable habitat was compared to actual fish observations, good agreement was found. For projected climate change, the simulations showed how much of the available stream habitat would be lost. In the examples presented the effect of cold hypolimnetic water release from a reservoir or groundwater discharges is felt as far as 48 km (30 miles) downstream from its source, especially in smaller shaded streams. The impact of climate change on stream temperatures below dams is more pronounced when the water release is from the epilimnion (reservoir surface) rather than the hypolimnion (deep water). Examples used for this study show elimination of coldwater habitat for rainbow trout when the upstream release is from the surface of a reservoir, but only reductions of coldwater habitat when the upstream release is from a reservoir hypolimnion.  相似文献   

4.
A numerical stream temperature model that accounts for kinematic wave flow routing, and heat exchange fluxes between stream water and the atmosphere, and stream water and the stream bed is developed and calibrated to a data-set from the Lower Madison River, Montana, USA. Future climate scenarios were applied to the model through changes to the atmospheric input data based on air temperature and solar radiation output from four General Circulation Models (GCM) for the region under atmospheric CO2 concentration doubling. The purpose of this study was to quantify potential climate change impacts on water temperature for the Lower Madison River, and to assess possible impacts to aquatic ecosystems. Because water temperature is a critical component of fish habitat, this information could be of use in future planning operations of current reservoirs. We applied air temperature changes to diurnal temperatures, daytime temperatures only, and nighttime temperatures only, to assess the impacts of variable potential warming trends. The results suggest that, given the potential climatic changes, the aquatic ecosystem downstream of Ennis Lake will experience higher water temperatures, possibly leading to increased stress on fish populations.Daytime warming produced the largest increases in downstream water temperature.  相似文献   

5.
A physical model was developed for describing the thermal environment of ponded shallow water as a model for rice fields in relation to climatic conditions. The model was used to assess probable effects of CO2-induced warming on the thermal conditions of ponded shallow water. It was assumed that an altered equilibrium climate was produced by atmospheric CO2 which was twice that of present levels. The 1951–80 climatic means of Japan were used as baseline data. Water temperature and energy balance characteristics predicted from the model were compared between both climates. The most notable results were that water temperature under CO2 doubling rose 2 to 4 °C. These increases in temperature would induce a remarkable northward shift of the 15 °C isotherm which characterizes the isochrone of safe transplanting dates for rice seedlings. CO2-warming would have a considerable influence on the energy balance characteristics, intensifying the evaporation rate from the water surface. Changes in thermal conditions of rice fields due to CO2-induced climatic warming are, therefore, expected to bring about significant effects on aquatic environments and the life forms they support.  相似文献   

6.
A deterministic, one-dimensional model is presented to simulate daily water temperature profiles and associated ice and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface area (As), maximum depth (HMAX), and Secchi depth (zs), the latter, used as a measure of light attenuation and trophic state. The model is driven by daily weather data and operates year-round over multiple years. The model has been tested with extensive data (over 5,000 temperature points). Standard error between simulated and measured water temperatures is 1.4°C in the open water season and 0.5°C in the ice cover season. The model is applied to simulate the sensitivity of Minnesota lake water temperature characteristics to climate change. The projected climate changes due to a doubling of atmospheric CO2 are obtained from the output of the Canadian Climate Center General Circulation Model (CCC GCM) and the Goddard Institute of Space Studies General Circulation Model (GISS GCM). Simulated lake temperature characteristics have been plotted in a coordinate system with a lake geometry ratio (A s 0.25 /HMAX) on one axis and Secchi depth on the other. The lake geometry ratio expresses a lake's susceptibility to stratification. By interpolation, the sensitivity of lake temperature characteristics to changes of water depth and Secchi depth under the projected climate scenarios can therefore be obtained. Selected lake temperature characteristics simulated with past climate conditions (1961–1979) and with a projected 2 × CO2 climate scenario as input are presented herein in graphical form. The simulation results show that under the 2 × CO2 climate scenario ice formation is delayed and ice cover period is shortened. These changes cause water temperature modifications throughout the year.  相似文献   

7.
Records of hydrologic parameters, especially those parameters that are directly linked to air temperature, were analyzed to find indicators of recent climate warming in Minnesota, USA. Minnesota is projected to be vulnerable to climate change because of its location in the northern temperate zone of the globe. Ice-out and ice-in dates on lakes, spring (snowmelt) runoff timing, spring discharge values in streams, and stream water temperatures recorded up to the year 2002 were selected for study. The analysis was conducted by inspection of 10-year moving averages, linear regression on complete and on partial records, and by ranking and sorting of events. Moving averages were used for illustrative purposes only. All statistics were computed on annual data. All parameters examined show trends, and sometimes quite variable trends, over different periods of the record. With the exception of spring stream flow rates the trends of all parameters examined point toward a warming climate in Minnesota over the last two or three decades. Although hidden among strong variability from year to year, ice-out dates on 73 lakes have been shifting to an earlier date at a rate of −0.13 days/year from 1965 to 2002, while ice-in dates on 34 lakes have been delayed by 0.75 days/year from 1979 to 2002. From 1990 to 2002 the rates of change increased to −0.25 days/year for ice-out and 1.44 days/year for ice-in. Trend analyses also show that spring runoff at 21 stream gaging sites examined occurs earlier. From 1964 to 2002 the first spring runoff (due to snowmelt) has occurred −0.30 days/year earlier and the first spring peak runoff −0.23 days/year earlier. The stream water temperature records from 15 sites in the Minneapolis/St Paul metropolitan area shows warming by 0.11C/year, on the average, from 1977 to 2002. Urban development may have had a strong influence. The analysis of spring stream flow rates was inconclusive, probably because runoff is linked as much to precipitation and land use as to air temperature. Ranking and sorting of annual data shows that a disproportionately large number of early lake ice-out dates has occurred after 1985, but also between 1940 and 1950; similarly late lake ice-in has occurred more frequently since about 1990. Ranking and sorting of first spring runoff dates also gave evidence of earlier occurrences, i.e. climate warming in late winter. A relationship of changes in hydrologic parameters with trends in air temperature records was demonstrated. Ice-out dates were shown to correlate most strongly with average March air temperatures shifting by −2.0 days for a 1°C increase in March air temperature. Spring runoff dates also show a relationship with March air temperatures; spring runoff dates shift at a rate of −2.5 days/1°C minimum March air temperature change. Water temperatures at seven river sites in the Minneapolis/St Paul metropolitan area show an average rise of 0.46°C in river temperature/1°C mean annual air temperature change, but this rate of change probably includes effects of urban development. In conclusion, records of five hydrologic parameters that are closely linked to air temperature show a trend that suggests recent climate warming in Minnesota, and especially from 1990 to 2002. The recent rates of change calculated from the records are very noteworthy, but must not be used to project future parameter values, since trends cannot continue indefinitely, and trend reversals can be seen in some of the long-term records.  相似文献   

8.
Summary An analysis of data pertaining to the period 1861–1986 reveals that (1) a 1 °C rise in the mean annual air temperature of the British Isles has historically been associated with a 35% drop in the percentage of days that the United Kingdom has experienced cyclonic flow, and (2) a 2 °C increase in the mean annual air temperature over the sea to the north has typically been matched by a 60% drop in the percentage of days that the isles have experienced cyclonic flow originating from that source region. These findings raise significant questions about the oft-reported claim that CO2-induced global warming will lead to an increase in world storminess.With 3 Figures  相似文献   

9.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   

10.
The snow-sea-ice albedo parameterization in an atmospheric general circulation model (GCM), coupled to a simple mixed-layer ocean and run with an annual cycle of solar forcing, is altered from a version of the same model described by Washington and Meehl (1984). The model with the revised formulation is run to equilibrium for 1 × CO2 and 2 × CO2 experiments. The 1 ×CO2 (control) simulation produces a global mean climate about 1° warmer than the original version, and sea-ice extent is reduced. The model with the altered parameterization displays heightened sensitivity in the global means, but the geographical patterns of climate change due to increased carbon dioxide (CO2) are qualitatively similar. The magnitude of the climate change is affected, not only in areas directly influenced by snow and ice changes but also in other regions of the globe, including the tropics where sea-surface temperature, evaporation, and precipitation over the oceans are greater. With the less-sensitive formulation, the global mean surface air temperature increase is 3.5 °C, and the increase of global mean precipitation is 7.12%. The revised formulation produces a globally averaged surface air temperature increase of 4.04 °C and a precipitation increase of 7.25%, as well as greater warming of the upper tropical troposphere. Sensitivity of surface hydrology is qualitatively similar between the two cases with the larger-magnitude changes in the revised snow and ice-albedo scheme experiment. Variability of surface air temperature in the model is comparable to observations in most areas except at high latitudes during winter. In those regions, temporal variation of the sea-ice margin and fluctuations of snow cover dependent on the snow-ice-albedo formulation contribute to larger-than-observed temperature variability. This study highlights an uncertainty associated with results from current climate GCMs that use highly parameterized snow-sea-ice albedo schemes with simple mixed-layer ocean models.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
A version of the National Center for Atmospheric Research community climate model — a global, spectral (R15) general circulation model — is coupled to a coarse-grid (5° latitude-] longitude, four-layer) ocean general circulation model to study the response of the climate system to increases of atmospheric carbon dioxide (CO2). Three simulations are run: one with an instantaneous doubling of atmospheric CO2 (from 330 to 660 ppm), another with the CO2 concentration starting at 330 ppm and increasing linearly at a rate of 1% per year, and a third with CO2 held constant at 330 pm. Results at the end of 30 years of simulation indicate a globally averaged surface air temperature increase of 1.6° C for the instantaneous doubling case and 0.7°C for the transient forcing case. Inherent characteristics of the coarse-grid ocean model flow sea-surface temperatures (SSTs) in the tropics and higher-than-observed SSTs and reduced sea-ice extent at higher latitudes] produce lower sensitivity in this model after 30 years than in earlier simulations with the same atmosphere coupled to a 50-m, slab-ocean mixed layer. Within the limitations of the simulated meridional overturning, the thermohaline circulation weakens in the coupled model with doubled CO2 as the high-latitude ocean-surface layer warms and freshens and westerly wind stress is decreased. In the transient forcing case with slowly increasing CO2 (30% increase after 30 years), the zonal mean warming of the ocean is most evident in the surface layer near 30°–50° S. Geographical plots of surface air temperature change in the transient case show patterns of regional climate anomalies that differ from those in the instantaneous CO2 doubling case, particularly in the North Atlantic and northern European regions. This suggests that differences in CO2 forcing in the climate system are important in CO2 response in regard to time-dependent climate anomaly regimes. This confirms earlier studies with simple climate models that instantaneous CO2 doubling simulations may not be analogous in all respects to simulations with slowly increasing CO2.A portion of this study is supported by the US Department of Energy as part of its Carbon Dioxide Research Program  相似文献   

12.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

13.
We examine summer temperature patterns in the Wenatchee River and two of its major tributaries Icicle and Nason Creeks, located in the Pacific Northwest region of the United States. Through model simulations we evaluate the cooling effects of mature riparian vegetation corridors along the streams and potential increases due to global warming for the 2020s–2080s time horizons. Site potential shade influences are smaller in the mainstream due to its relatively large size and reduced canopy density in the lower reaches, proving a modest reduction of about 0.3°C of the stream length average daily maximum temperature, compared with 1.5°C and 2.8°C in Icicle and Nason Creeks. Assuming no changes in riparian vegetation shade, stream length-average daily maximum temperature could increase in the Wenatchee River from 1–1.2°C by the 2020s to 2°C in the 2040s and 2.5–3.6°C in the 2080s, reaching 27–30°C in the warmest reaches. The cooling effects from the site potential riparian vegetation are likely to be offset by the climate change effects in the Wenatchee River by the 2020s. Buffers of mature riparian vegetation along the banks of the tributaries could prevent additional water temperature increases associated with climate change. By the end of the century, assuming site potential shade, the tributaries could have a thermal condition similar to today’s condition which has less shade. In the absence of riparian vegetation restoration, at typical summer low flows, stream length average daily mean temperatures could reach about 16.4–17°C by the 2040s with stream length average daily maxima around 19.5–20.6°C, values that can impair or eliminate salmonid rearing and spawning. Modeled increases in stream temperature due to global warming are determined primarily by the projected reductions in summer streamflows, and to a lesser extent by the increases in air temperature. The findings emphasize the importance of riparian vegetation restoration along the smaller tributaries, to prevent future temperature increases and preserve aquatic habitat.  相似文献   

14.
The CERES-Rice v3. crop simulation model, calibrated and validated for its suitability to simulate rice production in the tropical humid climate Kerala State of India, is used for analysing the effect of climate change on rice productivity in the state. The plausible climate change scenario for the Indian subcontinent as expected by the middle of the next century, taking into account the projected emissions of greenhouse gases and sulphate aerosols, in a coupled atmosphere-ocean model experiment performed at Deutsches Klimarechenzentrum, Germany, is adopted for the study. The adopted scenario represented an increase in monsoon seasonal mean surface temperature of the order of about 1.5°C, and an increase in rainfall of the order of 2 mm per day, over the state of Kerala in the decade 2040–2049 with respect to the 1980s. The IPCC Business-as-usual scenario projection of plant usable concentration of CO2 about 460 PPM by the middle of the next century are also used in the crop model simulation. On an average over the state with the climate change scenario studied, the rice maturity period is projected to shorten by 8% and yield increase by 12%. When temperature elevations only are taken into consideration, the crop simulations show a decrease of 8% in crop maturity period and 6% in yield. This shows that the increase in yield due to fertilisation effect of elevated CO2 and increased rainfall over the state as projected in the climate change scenario nearly makes up for the negative impact on rice yield due to temperature rise. The sensitivity experiments of the rice model to CO2 concentration changes indicated that over the state, an increase in CO2 concentration leads to yield increase due to its fertilisation effect and also enhance the water use efficiency of the paddy. The temperature sensitivity experiments have shown that for a positive change in temperature up to 5°C, there is a continuous decline in the yield. For every one degree increment the decline in yield is about 6%. Also, in another experiment it is observed that the physiological effect of ambient CO2 at 425 ppm concentration compensated for the yield losses due to increase in temperature up to 2°C. Rainfall sensitivity experiments have shown that increase in rice yield due to increase in rainfall above the observed values is near exponential. But decrease in rainfall results in yield loss at a constant rate of about 8% per 2 mm/day, up to about 16 mm/day.  相似文献   

15.
Summary In this paper we briefly describe the characteristics and the performance of our 1-D Muenster Climate Model. The model system consists of coupled models including gas cycle models, an energy balance model and a sea level rise model. The chemical feedback mechanisms among greenhouse gases are not included. This model, which is a scientifically-based parameterized simulation model, is used here primarily to help assess the effectiveness of various plausible policy options in mitigating the additional man-made greenhouse warming and the resulting sea level rise.For setting priorities it is important to assess the effectiveness of the various measures by which the greenhouse effect can be reduced. To this end we take a Scenario Business-as-Usual as a reference case (Leggett et al., 1992) and study the mitigating effects of the following four packages of measures: The Copenhagen Agreements on CFC, HCFC, and halon reduction (GECR, 1992), the Tropical Forest Preservation Plan of the Climate Enquete-Commission of the German Parliament on CO2 reduction (ECGP, 1990), a detailed reduction scheme for energy-related CO2 (ECGP, 1990), and a preliminary scheme for CH4, CO, and N2O reduction (Bach and Jain, 1992–1993).The required reduction depends, among others, on the desired climate and ecosystem protection. This is defined by the Enquete-Commission and others as a mean global rate of surface temperature change of ca. 0.1 °C per decade — assumed to be critical to many ecosystems — and a mean global warming ceiling of ca. 2 °C in 2100 relative to 1860.Our results show that the Copenhagen Agreements, the Tropical Forest Preservation Plan, the energy-related CO2 reduction scheme, and the CH4 and N2O reduction schemes could mitigate the anthropogenic greenhouse warming by ca. 12%, 6%, 35%, and 9% respectively. Taken together, all four packages of measures could reduce the man-made greenhouse effect by more than 60% until 2100; i.e. over the climate sensitivity range 2.5 °C (1.5 to 4.5) for 2 × CO2, the warming could be reduced from 3.5 °C (2.4 to 5.0) without specific measures to 1.3 °C (0.9 to 2.0) with the above packages of measures; and likewise, the mean global sea level rise could be reduced from 65 cm (46 to 88) without specific measures to 32 cm (22 to 47) with the above measures.Finally, the model results also emphasize the importance of trace gases other than CO2 in mitigating additional man-made greenhouse warming. According to our preliminary estimates, CH4 could in the short term make a sizable contribution to the reduction of the greenhouse effect (because of its relatively short lifetime of 10 yr), as could N2O in the medium and long term (with a relatively long lifetime of 150 yr).With 7 Figures  相似文献   

16.
The projected response of coniferous forests to a climatic change scenario of doubled atmospheric CO2, air temperature of +4 °C, and +10% precipitation was studied using a computer simulation model of forest ecosystem processes. A topographically complex forested region of Montana was simulated to study regional climate change induced forest responses. In general, increases of 10–20% in LAI, and 20–30% in evapotranspiration (ET) and photosynthesis (PSN) were projected. Snowpack duration decreased by 19–69 days depending on location, and growing season length increased proportionally. However, hydrologic outflow, primarily fed by snowmelt in this region, was projected to decrease by as much as 30%, which could virtually dry up rivers and irrigation water in the future.To understand the simulated forest responses, and explore the extent to which these results might apply continentally, seasonal hydrologic partitioning between outflow and ET, PSN, respiration, and net primary production (NPP) were simulated for two contrasting climates of Jacksonville, Florida (hot, wet) and Missoula, Montana (cold, dry). Three forest responses were studied sequentially from; climate change alone, addition of CO2 induced tree physiological responses of-30% stomatal conductance and +30% photosynthetic rates, and finally with a reequilibration of forest leaf area index (LAI), derived by a hydrologic equilibrium theory. NPP was projected to increase 88%, and ET 10%, in Missoula, MT, yet dcrease 5% and 16% respectively for Jacksonville, FL, emphasizing the contrasting forest responses possible with future climatic change.  相似文献   

17.
Summary  It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming. Received July 20, 1999/Revised April 18, 2000  相似文献   

18.
This work uses an energy balance climate model (EBCM) with explicit infrared radiative transfer, parametrized tropospheric temperature and humidity profiles, and separate stratosphere, troposphere, and surface energy balances, to investigate claims that a downward redistribution of tropospheric water vapor in response to surface warming could serve as a strong negative feedback on climatic change. A series of sensitivity tests is carried out using: (1) a variety of relationships between total precipitable water in the troposphere and temperature; (2) feedbacks between surface temperature and the vertical distribution of tropospheric water vapor at low latitudes; and (3) feedback between surface temperature or meridional temperature gradient and lapse rate. Fixed relative humidity (RH) enhances the global mean surface temperature response to a CO2 doubling by only 50% compared to fixed absolute humidity, giving a response of 1.8 K. When water vapor is assumed to be redistributed downward between 30°S–30°N such that a 1 K surface warming reduces total precipitable water above 600 hPa by 10%, the global mean surface air temperature response is reduced to 1.2 K. Assuming a stronger downward redistribution in relation to surface temperature change has a rapidly diminishing marginal effect on global mean and tropical surface temperature response, while slightly increasing the warming at high latitudes due to the parametrized dependence of middle-to-high latitude lapse rate on the meridional temperature gradient. A modest downward water vapor redistribution, such that absolute humidity in the upper troposphere at subtropical latitudes is constant as total precipitable water increases, can reduce the tropical temperature sensitivity to less than 1 K, while increasing the equator-to-pole amplification of the surface air temperature response from a factor of about three to a factor of four. However, it is concluded that whatever changes in future GCM response might occur as a result of new parametrizations of subgrid-scale processes, they are exceedingly unlikely to produce a climate sensitivity to a CO2 doubling of less than 1 K even if there is a strong downward shift in the water vapor distribution as climate warms. Received: 23 February 1998 / Accepted: 1 November 1999  相似文献   

19.
The signal of recent global warming has been detected in meteorological records, borehole temperatures and by several indirect climate indicators. Anthropogenic warming continues to evolve, and various methods are used to study and predict the changes of the global and regional climate. Results derived from GCMs, palaeoclimate reconstructions, and regional climate models differ in detail. An empirical model could be used to predict the spatial pattern of the near-surface air temperature and to narrow the range of regional uncertainties. The idea behind this approach is to study the correlations between regional and global temperature using century-scale meteorological records, and to evaluate the regional pattern of the future climate using regression analysis and the global-mean air temperature as a predictor. This empirical model, however, is only applicable to those parts of the world where regional near-surface air temperature reacts linearly to changes of the global thermal regime. This method and data from a set of approximately 2000 weather stations with continuous century-scale records of the monthly air temperature was applied to develop the empirical map of the regional climate sensitivity. Data analysis indicated that an empirical model could be applied to several large regions of the World, where correlations between local and global air temperature are statistically significant. These regions are the western United States, southern Canada, Alaska, Siberia, south-eastern Asia, southern Africa and Australia, where the correlation coefficient is typically above 0.9. The map of regional climate sensitivity has been constructed using calculated coefficients of linear regression between the global-mean and regional annual air temperature. As long as the correlations between the local and global air temperature are close to those in the last several decades, this map provides an effective tool to scale down the projection of the global air temperature to regional level. According to the results of this study, maximum warming at the beginning of the 21st century will take place in the continental parts of North America and Eurasia. The empirical regional climate sensitivity defined here as the response of the mean-annual regional temperature to 1 °C global warming was found to be 5–6 °C in southern Alaska, central Canada, and over the continental Siberia, 3–4 °C on the North Slope of Alaska and western coast of the U.S.A., and 1–2 °C in most of the central and eastern U.S.A. and eastern Canada. Regions with negative sensitivity are located in the southeastern U.S.A., north-western Europe and Scandinavia. The local tendency towards cooling, although statistically confirmed by modern data, could, however, change in the near future.  相似文献   

20.
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号