首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Widespread till and moraines record excursions of middle-Pleistocene ice that flowed up-slope into several watersheds of the Valley and Ridge Province along the West Branch of the Susquehanna River. A unique landform assemblage was created by ice-damming and jökulhlaups emanating from high gradient mountain watersheds. This combination of topography formed by multiple eastward-plunging anticlinal ridges, and the upvalley advance of glaciers resulted in an ideal geomorphic condition for the formation of temporary ice-dammed lakes. Extensive low gradient (1°–2° slope) gravel surfaces dominate the mountain front geomorphology in this region and defy simple explanation. The geomorphic circumstances that occurred in tributaries to the West Branch Susquehanna River during middle Pleistocene glaciation are extremely rare and may be unique in the world. Failure of ice dams released sediment-rich water from lakes, entraining cobbles and boulders, and depositing them in elongated debris fans extending up to 9 km downstream from their mountain-front breakout points. Poorly developed imbrication is rare, but occasionally present in matrix-supported sediments resembling debris flow deposits. Clast weathering and soils are consistent with a middle Pleistocene age for the most recent flows, circa the 880-ka paleomagnetic date for glacial lake sediments north of the region on the West Branch Susquehanna River. Post-glacial stream incision has focused along the margins of fan surfaces, resulting in topographic inversion, leaving bouldery jökulhlaup surfaces up to 15 m above Holocene channels. Because of their coarse nature and high water tables, jökulhlaup surfaces are generally forested in contrast to agricultural land use in the valleys and, thus, are readily apparent from orbital imagery.  相似文献   

2.
The basaltic Azas Plateau volcanic field is located in the Tuva Republic of the Russian Federation. The area was glaciated multiple times, and the field is characterized by the formation of subglacial volcanoes called tuyas, but subaerial volcanoes and lava fields also exist. A combined study of remote sensing and field observations in the vicinity of the tuyas in the southeastern Azas Plateau volcanic field identified landforms that are best explained by the jökulhlaup hypothesis. The landforms include elongated hills, paleochannels, and butte and basin topography. These landforms are hypothesized to have formed by both erosion and deposition caused by high-energy water streams. The triggering for the hypothesized jökulhlaups was either melting of ice by subglacial volcanism and/or destabilization of ice-dammed/subglacial reservoirs. The age estimation of the flood events is difficult, but they probably occurred during the ice ages of the Quaternary, as late as in the Middle-Late Pleistocene.  相似文献   

3.
Geo-electrical resistivity surveys have been carried out at recently deglaciated sites in front of three glaciers in southern Iceland: Skeiðarájökull, Hrútárjökull, and Virkisjökull. The results show the presence of old glacier ice beneath debris mantles of various thickness. We conclude that buried glacier ice has survived for at least 50 years at Virkisjökull and Hrútárjökull, and probably for over 200 years at Skeiðarájökull. Additional data from a further site have identified a discontinuous ice core within 18th-century jökulhlaup deposits. Photographic and lichenometric evidence show that the overlying debris has been relatively stable, and hence melting of the ice at all four sites is proceeding slowly due to the heat-shielding properties of the overburden. The geomorphic implications are pertinent when considering the potential longevity of buried ice. The possible implications for dating techniques, such as lichenometry, radiocarbon dating and cosmogenic surface-exposure dating are also important, as long-term readjustments of surface forms may lead to dating inaccuracy. Finally, it is recognised that landscape development in areas of stagnant ice topography may post-date initial deglaciation by a considerable degree.  相似文献   

4.
The Upper Ordovician in the Tarim Basin contains 5000–7000 m of siliciclastic and calciclastic deep‐water, gravity‐flow deposits. Their depositional architecture and palaeogeographical setting are documented in this investigation based on an integrated analysis of seismic, borehole and outcrop data. Six gravity‐flow depositional–palaeogeomorphological elements have been identified as follows: submarine canyon or deeply incised channels, broad and shallow erosional channels, erosional–depositional channel and levee–overbank complexes, frontal splays‐lobes and nonchannelized sheets, calciclastic lower slope fans and channel lobes or sheets, and debris‐flow complexes. Gravity‐flow deposits of the Sangtamu and Tierekeawati formations comprise a regional transgressive‐regressive megacycle, which can be further classified into six sequences bounded by unconformities and their correlative conformities. A series of incised valleys or canyons and erosional–depositional channels are identifiable along the major sequence boundaries which might have been formed as the result of global sea‐level falls. The depositional architecture of sequences varies from the upper slope to abyssal basin plain. Palaeogeographical patterns and distribution of the gravity‐flow deposits in the basin can be related to the change in tectonic setting from a passive continental margin in the Cambrian and Early to Middle Ordovician to a retroarc foreland setting in the Late Ordovician. More than 3000 m of siliciclastic submarine‐fan deposits accumulated in south‐eastern Tangguzibasi and north‐eastern Manjiaer depressions. Sedimentary units thin onto intrabasinal palaeotopographical highs of forebulge origin and thicken into backbulge depocentres. Sediments were sourced predominantly from arc terranes in the south‐east and the north‐east. Slide and mass‐transport complexes and a series of debris‐flow and turbidite deposits developed along the toes of unstable slopes on the margins of the deep‐water basins. Turbidite sandstones of channel‐fill and frontal‐splay origin and turbidite lobes comprise potential stratigraphic hydrocarbon reservoirs in the basin.  相似文献   

5.
Jökulhlaups (glacial outburst floods) are common hazards in many glaciated environments. However, research on the controls on the sedimentological and geomorphological impact of jökulhlaups is rare. Developing a more comprehensive understanding of flood impacts may be useful for hazard identification, prediction and mitigation. This study determines the controls on the sedimentological and geomorphological impact of a jökulhlaup in January 2002 at Kverkfjöll, northern Iceland. This jökulhlaup, caused by geothermal activity, reached a peak discharge of 490 m3s?1 as recorded at a permanent gauging station 40 km downstream from the glacier snout. However, reconstructed peak discharges in the proximal part of the jökulhlaup channel near the glacier snout indicate a peak discharge of 2590 m3s?1. The jökulhlaup hydrograph was characterized by a rapid rising stage and a more gradual falling stage. As a result, sedimentary and geomorphological impacts included poorly sorted, structureless, matrix‐supported deposits; massive sand units; clast‐supported units; ice‐proximal cobbles, rip‐up clasts and kettle‐holes; and steep‐sided kettle‐holes. These features are proposed to be characteristic of rapid rising stage deposition. Additionally, large‐scale gravel bars and bedload sheets prograded and migrated during the rapid rising stage. The development of these bedforms was facilitated by high bedload transport rates, due to high discharge acceleration rates during the rapid rising stage. During the more prolonged falling stage, there was sufficient time for sediment incision and erosion to occur, exhuming cobbles, ice blocks and rip‐up clasts, and creating well‐defined terrace surfaces. This study provides a clearer understanding of hydrological and sedimentological processes and mechanisms operating during jökulhlaups, and helps to identify flood hazards more accurately, which is fundamental for hazard management and minimizing risk.  相似文献   

6.
We present data from a proglacial river in Iceland that exhibits very different sedimentological characteristics when compared to its alpine counterparts. The braidplain is characterised by coarse outburst gravels that inhibit sediment transport and channel change. Bedload transport is restricted to the movement of fine-grained gravels that pass through the channel system without promoting significant changes in channel geometry. Bar forms are erosional features, inherited from the last major peak flow, rather than depositional in nature. On the basis of our observations we conclude that braidplain morphology is controlled by low frequency, high magnitude flow events, possibly associated with glacial outburst floods. This is in marked contrast to process-form relationships in more dynamic alpine proglacial channels that are characterised by high rates of sediment transport and channel change.  相似文献   

7.
The catchment of the River Partnach, a torrent situated in a glacial valley in the Northern Calcareous Alps of Bavaria/Germany, was affected by a high‐magnitude flood on 22/23 August 2005 with a peak discharge of more than 16 m3s‐1 at the spring and about 50 m3s‐1 at the catchment outlet. This flood was caused by a long period of intense rainfall with a maximum intensity of 230 mm per day. During this event, a landslide dam, which previously held a small lake, failed. The flood wave originating from the dam breach transported a large volume of sediment (more than 50 000 m3) derived from bank erosion and the massive undercutting of a talus cone. This caused a fundamental transformation of the downstream channel system including the redistribution of large woody debris and channel switching. Using terrestrial survey and aerial photography, erosional and depositional consequences of the event were mapped, pre‐ and post‐event surfaces were compared and the sediment budget of the event calculated for ten consecutive channel reaches downstream of the former lake. According to the calculations more than 100 000 tonnes of sediment were eroded, 75% of which was redeposited within the channel and the proximal floodplain. A previous large flood which occurred a few weeks prior to the August 2005 event had a significant effect on controlling the impact of this event.  相似文献   

8.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   

9.
Episodic wood loading in a mountainous neotropical watershed   总被引:1,自引:0,他引:1  
The Upper Rio Chagres drains 414 km2 of steep, mountainous terrain in central Panama. A tropical air mass thunderstorm on 10 July 2007 produced a flood across the basin that peaked at 720 m3 s− 1 at a headwaters gage draining 17.5 km2 and 1710 m3 s− 1 at a downstream gage draining 414 km2. The storm also triggered numerous landslides in the upper basin, which facilitated the formation of large logjams along portions of the channel where transport capacity of wood was reduced by a change in channel geometry such as a bend or channel expansion. During field work in February 2008, we characterized three jams with surface areas of 400–2450 m2; two of these jams resulted in storage of substantial (1100–8200 m3) sediment wedges upstream. We returned to these sites in March 2009 to document changes in the logjams and sediment storage. Drawing on observations made in the basin since 2002, and site visits during 2008 and 2009, we suggest that jams such as these last two years or less. We propose that wood dynamics in the Upper Chagres alternate between brief periods of moderate wood load in the form of large logjams and much longer periods of essentially no wood load, a situation that contrasts with the more consistent wood loads in catchments of similar size in temperate environments and with limited studies of more consistent wood load in tropical catchments with no landslides.  相似文献   

10.
Depositional effects of two great floods in the Nysa drainage basin have been studied: the alluvial forms and deposits of channels and floodplains. Three types of bars and one overbank form were found in the mountain streams, and four types of bars and three types of overbank forms have been distinguished in main rivers. A specific spatial succession of depositional forms was recognized along the mountain streams, however, no analogous phenomena were noted within the main river valleys. Several types of bars and alluvial lithofacies have been regarded as characteristic effects of the catastrophic flood. The study indicates that the Nysa river is close to the threshold of metamorphosis to a typical braided fluvial system.  相似文献   

11.
Eric C. Carson   《Geomorphology》2006,75(3-4):368
This study assesses historic overbank alluvial sedimentation along a low-gradient reach of West Fork Black's Fork in the northern Uinta Mountains, Utah. In this previously glaciated setting, an alluvial floodplain that is approximately 400 m wide by 1500 m long has been modified by the combined effects of valley morphometry and the recent history of clear-cut logging during the late 19th and early 20th Centuries. To quantify the effects on sedimentation and flow conveyance, three natural streambank exposures were sampled and analyzed for nuclear bomb fallout 137Cs. The distribution of 137Cs within the three profiles suggests that a remnant outwash terrace exerts a first-order control over the deposition of overbank alluvium. Upstream from a constriction in the floodplain caused by the terrace remnant, as much as 40 cm of overbank alluvium has been deposited since the beginning of clear-cut logging. Immediately downstream of that constriction, no evidence exists for any overbank sedimentation during that same period. Vibracore samples and Oakfield soil probe sampling throughout the study reach quantified the geographic extent and thicknesses of the historic alluvial package. Flood conveyance through the study area was modeled using the U.S. Army Corps of Engineers HEC-RAS modeling program. Model simulations were run for modern conditions (using surveyed topography) and for prehistoric conditions (using the modern topography less the historic alluvial package determined by 137Cs analyses). Model results indicate that the floodplain constriction caused a significant impediment to flood conveyance at even modest discharges during prehistoric conditions. This promoted ponding of floodwaters upstream of the constriction and deposition of alluvium. This has increased bank heights upstream of the constriction, to the point that under modern conditions 1- to 5-year recurrence interval floods are largely confined within the channel. These results confirm the validity of this new approach of combining 137Cs dating of alluvial sediments with HEC-RAS flow modeling to compare flood conveyance along a single stream reach prior to and since an abrupt change in alluvial sedimentation patterns.  相似文献   

12.
During break-up in the High Arctic, ice jams are insignificant, but large quantities of snow accumulated in the valleys strongly affect fluvial processes. Near Resolute, Cornwallis Island, many channels were first formed in valley snow drifts and their positions were unstable. Channels carved in the snow can easily accommodate changing discharge by a modification of their width, depth, and velocity. This causes considerable variation in the at-a-station hydraulic geometry relationships.

The availability of sediment is locally restricted by the snow lining along the channels, although some fluvial sediments deposited on the snow revealed that peak flows could entrain very large boulders. Several depositional features observed in the study area also indicated that fluvial activities can extend over a broad zone beyond the confines of the summer channels.

This study suggests that, by increasing discharge, snow jams enhance the erosional power of streams, but by interposing between streamflow and the valley floor, the snow can limit the supply of sediments. Whether the erosional or the protectional tendency dominates will depend upon the snow jam characteristics along various segments of the High Arctic streams.  相似文献   

13.
ABSTRACT Magnetostratigraphic chronologies, together with sedimentological, petrological, seismic and borehole data derived from the Oligo/Miocene Lower Freshwater Molasse Group of the North Alpine foreland basin enable a detailed reconstruction of alluvial architecture in relation to Alpine orogenic events. Six depositional systems are recorded in the Lower Freshwater Molasse Group. The bajada depositional system comprises 200–400-m-thick successions of ribbon channel conglomerates and overbank fines including mud- and debris-flows which were derived from the Alpine border chain. The alluvial megafan depositional system is made up of massive pebble-to-cobble conglomerates up to 3 km thick which reveal a fan-shaped geometry. This depositional environment grades downcurrent into the conglomerate channel belt depositional system, which comprises an ≈2-km-thick alternation of channel conglomerates and overbank fines. The sandstone channel belt depositional system is bordered by the 100–400-m-thick overbank fines assigned to the floodplain depositional system. At the feather edge of the basin, 50–400-m-thick lacustrine sediments in both clastic and carbonate facies represent the lacustrine depositional system. The spatial and temporal arrangement of these depositional systems was controlled by the geometrical evolution of the Molasse Basin. During periods of enhanced sediment supply and during phases of stable sliding of the entire wedge, >2000-m-thick coarsening-and thickening-upward megasequences comprising the conglomerate channel belt, alluvial megafan and bajada depositional systems were deposited in a narrow wedge-shaped basin. In the distal reaches of the basin, however, no sedimentary trend developed, and the basin fill comprises a <500-m-thick series of sandstone meander belt, floodplain and lacustrine depositional systems. During phases of accretion at the toe of the wedge, the basin widened, and prograding systems of multistorey channel sandstones extended from the thrust front to the distal reaches of the basin. The rearrangement of the depositional systems as a function of changing orogenic conditions created discordances, which are expressed seismically by onlap and erosion of beds delimiting sedimentary sequences. Whereas stable sliding of the wedge succeeded by accretion at the toe of the wedge is recorded in the proximal Lower Freshwater Molasse by a coarsening-and thickening-upward megasequence followed by erosion, the opposite trend developed in the distal reaches of the Molasse. Here, fine-grained sandstones and mudstones were deposited during periods of stable sliding, whereas phases of accretion caused a coarsening- and thickening-up megasequence to form.  相似文献   

14.
In February/March 2007 extreme rainfall occurred over a four‐day period in the 7000 km2 East Alligator River catchment in Arnhem Land, northern Australia. The resultant large flood caused extensive bank erosion, channel widening, stripping of point bars and floodplain, resulting in large amounts of sand transport. This sand was largely deposited in the downstream river channel as a sand slug, and as deep overbank sand splays where the valley abruptly widened immediately downstream of an island anabranching, bedrock‐confined reach. Interpretation of a time series of aerial photographs and satellite images from 1950 to 2012 showed that there have been considerable channel changes along the study reach. The aerial photographs show that extensive sedimentation in the same reach as in 2007 also occurred in 1975, 1981 and 1984. Each time, the sand slug was reworked rapidly over succeeding years by subsequent smaller floods, and the channel deepened naturally as sand supply declined due to revegetation of the upstream riparian zone and the reformation and stabilisation of point and lateral bars. Sand slug formation at an intermediate floodout is an episodic process dependent on the supply of large volumes of sand by extensive channel erosion during extreme floods. A conceptual geomorphic model was developed to highlight the differential effectiveness of extreme versus moderate floods.  相似文献   

15.
The Lamar River watershed of northeastern Yellowstone contains some of the most diverse and important habitat in the national park. Broad glacial valley floors feature grassland winter range for ungulates, riparian vegetation that provides food and cover for a variety of species, and alluvial channels that are requisite habitat for native fish. Rapid Neogene uplift and Quaternary climatic change have created a dynamic modern environment in which catastrophic processes exert a major influence on riverine–riparian ecosystems. Uplift and glacial erosion have generated high local relief and extensive cliffs of friable volcaniclastic bedrock. As a result, steep tributary basins produce voluminous runoff and sediment during intense precipitation and rapid snowmelt. Recent major floods on trunk streams deposited extensive overbank gravels that replaced loamy soils on flood plains and allowed conifers to colonize valley-floor meadows. Tree-ring dating identifies major floods in 1918, ca. 1873, and possibly ca. 1790. In 1996 and 1997, discharge during snowmelt runoff on Soda Butte Creek approached the 100-year flood estimated by regional techniques, with substantial local bank erosion and channel widening. Indirect estimates show that peak discharges in 1918 were approximately three times greater than in 1996, with similar duration and much greater flood plain impact. Nonetheless, 1918 peak discharge reconstructions fall well within the range of maximum recorded discharges in relation to basin area in the upper Yellowstone region. The 1873 and 1918 floods produced lasting impacts on the channel form and flood plain of Soda Butte Creek. Channels may still be locally enlarged from flood erosion, and net downcutting has occurred in some reaches, leaving the pre-1790 flood plain abandoned as a terrace. Gravelly overbank deposits raise flood-plain surfaces above levels of frequent inundation and are well drained, therefore flood-plain soils are drier. Noncohesive gravels also reduce bank stability and may have persistent effects on channel form. Overall, floods are part of a suite of catastrophic geomorphic processes that exert a very strong influence on landscape patterns and valley-floor ecosystems in northeastern Yellowstone.  相似文献   

16.
长江下游南京-镇江河段河漫滩粒度特征   总被引:2,自引:0,他引:2  
分析长江南京-镇江河段3个现代河漫滩沉积孔上部100 cm的粒度特征,探讨宁镇河段现代河漫滩的沉积环境。结果表明:GB孔、ZR孔和ZH孔沉积水动力较小,沉积物颗粒较细,均以粉砂为主; ZR孔的砂含量最多、沉积粒径最大、粒径和砂含量由底层向表层增加;ZH孔分选系数呈明显的阶段性特征。研究认为:河流比降、河势、分汊河床演变以及滩面植被是影响宁镇河段河漫滩粒度特征的重要因素。  相似文献   

17.
The rapidly subsiding central part of the Pannonian Basin, the flood-plain system of the Tisza River, is analyzed. Natural flood-conducting channels that were functioning prior to the construction of the water control measures of the 19th century have been identified and mapped. By now these channels have mostly disappeared; only small traces of them can be found on modern maps. The identification of these channels was achieved by studying historical maps of the region and by geomorphologic studies. Drawing the outline of the channels and the estimation of their initial meander size was supported by elevation models and satellite imagery. Eight flood breakout points and five independent channel systems were identified. The flood conveying capacity of each channel was also estimated, based on meander wavelengths. The reliability of this estimation is discussed. The channels functioned as anabranches, conducting the floods of the Tisza to its tributary, the Körös River. The efficiency of the flood control system could be increased by regeneration of these natural channels. The summarized water conveying capacity of the abandoned channels is estimated as 1000 m3/s, a value that is slightly under a half of the flood discharge of the Tisza River.  相似文献   

18.
We combine hydraulic modeling and field investigations of logjams to evaluate linkages between wood-mediated fluctuations in channel-bed-and water-surface elevations and the potential for lateral channel migration in forest rivers of Washington state. In the eleven unconfined rivers we investigated, logjams were associated with reduced channel gradient and bank height. Detailed river gauging and hydraulic modeling document significant increases in the water-surface elevation upstream of channel-spanning wood accumulations. Logjams initiated lateral channel migration by increasing bed-or water-surface elevations above adjacent banks. Because the potential for a channel to avulse and migrate across its floodplain increases with the size and volume of instream wood, the area of the valley bottom potentially occupied by a channel over a specified timeframe — the channel migration zone (CMZ) — is dependent on the state of riparian forests. The return of riparian forests afforded by current land management practices will increase the volume and caliber of wood entering Washington rivers to a degree unprecedented since widespread clearing of wood from forests and rivers nearly 150 years ago. A greater supply of wood from maturing riparian forests will increase the frequency and spatial extent of channel migration relative to observations from wood-poor channels in the period of post-European settlement. We propose conceptual guidelines for the delineation of the CMZs that include allowances for vertical fluctuations in channel elevation caused by accumulations of large woody debris.  相似文献   

19.
Floodplains contain valuable stratigraphic records of past floods, but these records do not always represent flood magnitudes in a straightforward manner. The depositional record generally reflects the magnitude, frequency, and duration of floods, but is also subject to storm-scale hysteresis effects, flood sequencing effects, and decade-scale trends in sediment load. Many of these effects are evident in the recent stratigraphic record of overbank floods along the Upper Mississippi River (UMR), where the floodplain has been aggrading for several thousand years. On low-lying floodplain surfaces in Iowa and Wisconsin, 137Cs profiles suggest average vertical accretion rates of about 10 mm/year since 1954. These rates are slightly less than rates that prevailed earlier in the 20th Century, when agricultural land disturbance was at a maximum, but they are still an order of magnitude greater than long-term average rates for the Holocene. As a result of soil conservation practices, accretion rates have decreased in recent decades despite an increase in the frequency of large floods.The stratigraphic record of the Upper Mississippi River floodplain is dominated by spring snowmelt events, because they are twice as frequent as rainfall floods, last almost twice as long, and are sometimes associated with very high sediment concentrations. The availability of sediment during floods is also influenced by a strong hysteresis effect. Peak sediment concentrations generally precede the peak discharges by 1–4 weeks, and concentrations are usually low (<50 mg/l) during the peak stages of most floods. The lag between peak concentration and peak discharge is especially large during spring floods, when much of the runoff is contributed by snowmelt in the far northern reaches of the valley.The great flood of 1993 on the Mississippi River focused attention on the geomorphic effectiveness and stratigraphic signature of large floods. At McGregor, where the peak discharge had a recurrence interval of 14 years, the flood was most notable for its long duration (168 days above 1600 m3s−1), high sediment concentrations (three episodes >180 mg/l), and large suspended load (1.71 Mt). The flood of 2001, despite its greater magnitude (recurrence interval 70 years), was associated with relatively low sediment concentrations (<60 mg/l). The 1993 and 2001 floods each left 30–80 mm of silty fine sand on most low-lying floodplain surfaces, but the 2001 flood produced sandy levees near the channel while the 1993 flood did not. The stratigraphic signature of these recent floods is more closely related to the duration and total suspended load of the event than to the magnitude of the peak discharge.  相似文献   

20.
J.A. Moody  R.H. Meade 《Geomorphology》2008,99(1-4):387-403
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes.Peak flood discharge was about 930 m3 s− 1, which lasted about eight days. During this time, the flood transported 8.2 million tons of sediment into and 4.5 million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7 m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5 m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16 m and the higher terrace by 0.063 m.Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07 m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号