首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
锡钨多金属矿化多与Li-F碱长花岗岩有关,其岩浆演化晚期常发生较大规模的液态分异作用。广西栗木锡钨铌钽矿与成矿有关的岩体包括肉红色中粒碱长花岗岩以及顶部的白色细粒碱长花岗岩。矿化产于碱长花岗岩顶部附近,主要矿化类型包括花岗岩型钨锡铌钽矿化、似伟晶岩型钨矿化、长石石英脉型钨矿化和石英脉型钨锡矿化。碱长花岗岩中存在大量岩浆液态不混溶现象,包括矿囊、似伟晶岩和细晶岩等。地质地球化学研究发现,岩浆液态不混溶作用贯穿于栗木碱长花岗岩分异演化的全过程,矿囊代表岩体中富含钨锡和挥发份的岩浆,岩体顶部的似伟晶岩和细晶岩是碱长花岗岩岩浆分异的结果。在岩浆液态不混溶作用过程中,W、Sn、Nb、Ta等成矿元素以及挥发份不断富集,形成岩浆岩型、长英质脉型以及石英脉型矿化。不同类型的矿化对应岩浆液态不混溶作用的不同阶段,由此建立了栗木矿床岩浆液态不混溶的成矿演化模型。  相似文献   

2.
液态不混溶作用是岩浆演化过程中的重要作用之一。本文针对具有普遍意义的硅酸盐岩浆液态不混溶作用的研究历史和进展,对其理论基础,包括熔体结构、相平衡、动力学和元素分配以及同位素分馏等问题进行了阐述。同时还就岩浆混溶作用中涉及到的稳定态和亚稳态液态不混溶不同的相平衡关系,以及从热力学角度液态不混溶作用发生的驱动力,不混溶相从成核到长大再到最终相分离的动力学过程进行了详细介绍。此外,针对岩浆系统,还总结了发生不混溶的条件和不混溶作用过程中元素的地球化学行为。最后以攀枝花层状岩体中部岩相带的形成为例,说明粒间熔体液态不混溶作用在韵律层形成过程中发挥的重要作用。  相似文献   

3.
岩浆不混溶作用过程中的岩浆动力学研究是岩石学研究领域中的一个空白。本文以粘性流体力学,流变学理论为基础,结合某些岩浆动力学实验结果,首次探讨了在岩浆发生不混溶作用过程中,某些岩浆的物理性质及贵浆运动的动力学的约束条件,主要包括:不混溶作用产生的两液相的分离速率,球体的沉浮条件,分布特征及雷诺数的计算方法,并探讨了这些参数在研究岩浆不混溶作用过程中的地质意义。  相似文献   

4.
河北阳原岩体辉石岩—正长岩组合与岩浆不混溶作用   总被引:1,自引:0,他引:1  
侯增谦 《现代地质》1990,4(2):53-64
河北阳原杂岩体可分为两个岩石系列:辉石岩系和正长岩系,具辉石岩-正长岩“双峰”岩石组合特征。本文从两个岩系的矿物化学,主要是从微量元素地球化学诸方面论证了辉石岩系-正长岩系是岩浆不混溶作用和结晶分异作用的综合作用产物。研究提出阳原初始母岩浆不混溶形成辉石岩岩浆单元和正长岩岩浆单元。在1100~850℃揾度范围内,两岩浆单元处于互不混溶、平衡共存状态;当温度降至850℃时,两岩浆单元外始了各自的结晶分异作用,形成辉石岩系和正长岩系。本文最后指出,岩浆的成核作用是岩浆不混溶的重要方式。岩浆体系的对流循环可以有效地使不混溶的两液相分离。  相似文献   

5.
中基性岩浆的不混溶作用及存在的问题   总被引:1,自引:0,他引:1  
王坤  董欢  曹永华  武晓霁 《地质论评》2017,63(3):739-757
不混溶作用作为岩浆演化的一种重要方式,已经被广泛报道存在于月球、地球岩石样品的形成过程中。在岩浆不混溶作用过程中,单一成分的熔体会分解成成分截然不同的富Fe、富Si两种熔体。这两种熔体具有共轭但相反的成分演化路径,可以为很多重要的成岩成矿问题提供较好的解释。然而,不混溶作用自从现代岩石学初期被提出起,其岩石学意义就一直广受争论。早期争论的焦点是自然岩浆是否可以发生不混溶作用,而近些年来,争论的焦点已转移至自然岩浆是否可以发生高温(1100℃)不混溶作用。此外,关于水对不混溶作用的影响以及不混溶熔体的相分离过程等方面也存有争议。但总体来说,现有的研究已经比较清楚地阐明了不混溶作用触发及演化的机理。本文回顾了不混溶作用的研究历史,介绍了影响不混溶作用的因素、不混溶作用的起始温度、不混溶熔体的成分及演化、不混溶熔体的发育及分离几方面的研究进展。另外,从不混溶作用在解释Bowen—Fenner之争、Daly间断、大洋斜长花岗岩的成因、斜长岩体型Fe—Ti—P矿床以及层状岩体中大型钒钛磁铁矿床的成因等几个重大科学问题中可能扮演的角色的角度,探讨了不混溶作用的岩石学、矿床学意义。最后,本文对不混溶作用研究中存在的问题进行了总结,认为对不混溶作用发生的物理化学条件、不混溶过程中的同位素分馏以及不混溶相分离的动力学过程等方面的研究存在不足,需要今后的工作去揭示并深入探讨。  相似文献   

6.
河北阳原辉石岩-正长岩杂岩体的球状黑云辉石正长岩是岩浆不混熔的产物。本文研究了微量元素、REE在球状岩石的球体相—基体相间的分配。提出控制元素在不混溶的两液相间分配的三种因素,建立了分配系数D_(M/O)~i与不混溶两液相的相对聚合度(NBO/T)_(M/O)之间的函数关系。这些研究可用于区分岩浆不混溶作用与其他作用,确定岩石成因。  相似文献   

7.
本文主要讨论了岩浆不混溶的内在因素和物化条件。研究提出阳原杂岩大于零的过剩自由能是出现不混溶的内在原因。岩浆中高P_2O_5、TiO_2、Zr、Hf、Ta、REE是岩浆不混溶的诱导因素。化学位计算揭示了球状黑云辉石正长岩之球体、基质两相及正长质和辉石质岩浆单元在液态时曾处于平衡状态。岩浆不混溶可能是在温度约1200℃、上地壳深度范围内发生的。阳原母岩浆不混溶的两液相可以分离聚集成两大岩浆单元,岩浆分溶不充分,便产生中间成分的黑云辉石正长岩。  相似文献   

8.
自然界中广泛存在硅酸盐与硫酸盐之间的熔体不混溶现象,这种不混溶过程控制了岩浆演化过程的氧逸度变化和岩浆中S的含量,同时也对金属元素的富集具有重要意义。前人对硫酸盐与硅酸盐的熔体不混溶过程及稀土元素在不混溶相分配行为的研究主要集中在碱性硅酸盐与硫酸盐体系,但对基性硅酸盐与硫酸盐的熔体不混溶行为及稀土元素在此过程中的分配规律研究仍相对薄弱。本文选择基性硅酸盐样品与实验用Na2SO4按质量比1∶1制成混合实验样品粉末,并添加少量H3BO3作为助熔剂,通过马弗炉加热至1 200℃,使粉末完全熔融,并在1 200℃恒温12 h后在马弗炉中快速冷却至常温。对加温-冷却后的样品进行详细的岩矿相、SEM/EDS和不同相态的原位LA-ICP-MS分析。研究结果表明,在1 200℃的条件下,硫酸盐与基性硅酸盐熔体可以大比例混溶,且降温会造成两者的不混溶,在不混溶过程中Na、Ca、K、REEs等趋向于进入硫酸盐熔体。不混溶形成的硫酸盐熔体中,稀土元素含量明显高于残余硅酸盐熔体,但轻重稀土元素没有明显的分异。不混溶硅酸盐熔...  相似文献   

9.
流体不混溶性和流体包裹体   总被引:16,自引:4,他引:12  
卢焕章 《岩石学报》2011,27(5):1253-1261
大多数流体包裹体是捕获于均匀体系,但有一部分包裹体捕获自非均匀体系(不混溶体系)。在自然界存在着许多不混溶的过程,这包括基性岩浆和酸性岩浆之间,岩浆与热液,岩浆与CO2,盐水溶液与CO2等。液体的不混溶性对于成矿作用十分重要,这方面有3个典型的例子,第一个是金矿的成矿作用与NaCl-H2O-CO2体系流体的不混溶有着重大的关系;第二个例子是斑岩铜矿;第三个例子是伟晶岩,发现在伟晶岩演化和成矿作用中存在着岩浆和热液的不混溶作用。实际上不混溶的大部分证据是从流体包裹体的研究中获得的。现在的问题是如何来确定哪些包裹体是从不混溶过程中捕获的。这种捕获于不混溶过程中的流体包裹体怎么来确定他的Th和成分。这种捕获于不混溶过程中的流体包裹体怎么与"卡脖子"拉伸作用"中捕获的包裹体和捕获自均匀体系的流体包裹体相区分。  相似文献   

10.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

11.
冈底斯岩基中包体的初步研究   总被引:2,自引:0,他引:2  
本文综合国内外研究成果对花岗岩中岩石包体进行成因归类,指出对其研究的理论和实际意义。以岩相学为基础,讨论冈底斯岩基中镁铁质包体的类型及形成机理,揭示冈底斯各单元岩浆作用初期的演化过程。  相似文献   

12.
Most sulfide-rich magmatic Ni-Cu-(PGE) deposits form in dynamic magmatic systems by partial melting S-bearing wall rocks with variable degrees of assimilation of miscible silicate and volatile components, and generation of barren to weakly-mineralized immiscible Fe sulfide xenomelts into which Ni-Cu-Co-PGE partition from the magma. Some exceptionally-thick magmatic Cr deposits may form by partial melting oxide-bearing wall rocks with variable degrees of assimilation of the miscible silicate and volatile components, and generation of barren Fe ± Ti oxide xenocrysts into which Cr-Mg-V ± Ti partition from the magma. The products of these processes are variably preserved as skarns, residues, xenoliths, xenocrysts, xenomelts, and xenovolatiles, which play important to critical roles in ore genesis, transport, localization, and/or modification. Incorporation of barren xenoliths/autoliths may induce small amounts of sulfide/chromite to segregate, but incorporation of sulfide xenomelts or oxide xenocrysts with dynamic upgrading of metal tenors (PGE > Cu > Ni > Co and Cr > V > Ti, respectively) is required to make significant ore deposits. Silicate xenomelts are only rarely preserved, but will be variably depleted in chalcophile and ferrous metals. Less dense felsic xenoliths may aid upward sulfide transport by increasing the effective viscosity and decreasing the bulk density of the magma. Denser mafic or metamorphosed xenoliths may also increase the effective viscosity of the magma, but may aid downward sulfide transport by increasing the bulk density of the magma. Sulfide wets olivine, so olivine xenocrysts may act as filter beds to collect advected finely dispersed sulfide droplets, but other silicates and xenoliths may not be wetted by sulfides. Xenovolatiles may retard settling of – or in some cases float – dense sulfide droplets. Reactions of sulfide melts with felsic country rocks may generate Fe-rich skarns that may allow sulfide melts to fractionate to more extreme Cu-Ni-rich compositions. Xenoliths, xenocrysts, xenomelts, and xenovolatiles are more likely to be preserved in cooler basaltic magmas than in hotter komatiitic magmas, and are more likely to be preserved in less dynamic (less turbulent) systems/domain/phases than in more dynamic (more turbulent) systems/domains/phases. Massive to semi-massive Ni-Cu-PGE and Cr mineralization and xenoliths are often localized within footwall embayments, dilations/jogs in dikes, throats of magma conduits, and the horizontal segments of dike-chonolith and dike-sill complexes, which represent fluid dynamic traps for both ascending and descending sulfides/oxides. If skarns, residues, xenoliths, xenocrysts, xenomelts, and/or xenovolatiles are present, they provide important constraints on ore genesis and they are valuable exploration indicators, but they must be included in elemental and isotopic mass balance calculations.  相似文献   

13.
笔者在冲绳海槽海底玄武岩基质中发现的中酸性玻璃质熔体 ,与以往在基性火山岩中发现的玻璃质熔体存在明显的差异 :( 1)在存在状态上 ,前者呈充填状态存在于细小的基质矿物之间 ,其体积明显受到岩浆冷却速率的制约 ;后者常出现富铁相和富硅相两种熔体共存现象 ,且一种熔体常呈球状分布于另一种熔体中。 ( 2 )在成分演化上 ,前者随着冷却速率的降低 ,成分向酸性方向演化 ;后者的成分与冷却速率间的关系不明显 ,一直表现为富铁相和富硅相两端员成分 ,缺失中间过渡成分。这两种类型的熔体 ,分别反映了幔源岩浆不同的演化过程 :冲绳海槽海底玄武岩中的中酸性玻璃质熔体 ,反映了幔源岩浆结晶分异演化过程 ,并记录了演化过程中各阶段产物的特征 ;而以往在基性火山岩中发现的富铁相和富硅相两种熔体的共存现象 ,反映了幔源岩浆的熔离过程 ,并记录了熔离产物的特征。  相似文献   

14.
柿竹园超大型钨矿床的成矿作用与成矿条件   总被引:8,自引:0,他引:8  
刘义茂  胥友志 《湖南地质》1995,14(4):211-219
柿竹园超大型钨多金属矿床,是幔拗区地壳加厚深熔和元古宇基底剪切熔融产生的岩浆,在燕山早期侵入活动中形成的。其成矿作用,包括:地壳熔融岩浆分异、熔—流体不混熔相分离成矿和地层物质淋滤—蒸馏—对流等联合成矿作用。成矿条件,具有:①特富的F、Cl、B元素组合和成矿元素的岩浆—热液熔—流系统;②充足的矿源及挥发份源的多源补给;③侏罗纪蓄水盆地提供渗滤、对流的水源和部分动力;④位于构造有利的地块边绿,多组断裂岩浆成矿带的交切热柱体上;⑤在极富的F、W、Sn、Mo、Bi、Pb、Zn地球化学区中;⑥以及高挥发组分在极优的Al、Si介质中对成矿物质的搬运;⑦在上部碳酸盐介质中交代、充填定位等优越的成矿条件。  相似文献   

15.
初论成矿流体及金属矿物富集系统   总被引:10,自引:4,他引:10  
在长期积累的有关金属成矿作用的研究资料和成果的基础上,吸收和借鉴相关学科领域的最新研究进展,作者初步提出了一个新的金属成矿系统分类方案。本篇首先介绍10种成矿流体及其金属矿物富集系统的主要特征,10种系统包括:镁铁质岩浆中的堆积系统、镁铁质岩浆与硫化物熔融体不混溶系统、长英质岩浆与挥发相不混溶系统、热水中矿物子相析出系统、热水与CO2不混溶系统、热水与有机物不混溶系统、变质热水矿物子相析出系统、地下水矿物子相析出系统、地表水中的堆积系统和地表水中矿物子相溶解系统。  相似文献   

16.
Twenty-five mafic microgranular enclaves of the Lavras Granite Complex in southern Brazil were studied petrographically and geochemically to establish their origin and to investigate the processes involved in their differentiation. Mesoscopic and microscopic textures indicate that they are products of magma mingling between a basic end member of probable mildly alkaline affinity and host shoshonitic and alkaline granitic rocks. The hybridisation process involved at least the following mechanisms: (i) chemical diffusion of volatiles and very mobile elements such as K to the less polymerised liquids, leading to the crystallisation of hydrated mafic minerals; (ii) chemical diffusion of Ti and P to the less polymerised liquids, leading to titanite and apatite crystallisation; (iii) mechanical accretion in the basic magma of early crystallised host granite phases that promoted enrichment of their major constituents and of trace elements with high partition coefficients in these phases; (iv) chemical diffusion of elements such as Rb, Nb, Y, and Yb with high Kd in the major enclave phases, from host magma into the basic enclaves. These processes occurred simultaneously, probably before the dispersion of basic batch magma forming the mafic microgranular enclaves, and caused hybridisation and complex geochemical patterns. The patterns are very different from the linear trends predicted for near-equilibrium systems such as those of magma mixing or fractional crystallisation.  相似文献   

17.
Sulfide ores that formed by magmatic segregation processes currently account for about 60% of mankind's supply of nickel, 98% of the platinum group metals, and substantial quantities of copper, cobalt, and other elements. The first stage in the generation of such an ore is the separation of an immiscible sulfide liquid from a mafic or ultramafic silicate magma. The sulfide acts as a collector of the ore metals and its tenor is determined by the concentrations of the metals in the parent magma, the degree to which the metals partition into the sulfide phase, and the relative proportions of sulfide, silicate liquid, and crystalline phases that equilibrate. Deposits of an economically exploitable grade represent metal concentrations of at least an order of magnitude greater than those in the parent magmas, and so sulfide saturation in itself does not lead to the formation of an ore. It is necessary that some process such as gravitative settling or flowage differentiation operate in the magma to accumulate the exsolved sulfide. Ultimately the ore grade reflects both the metal tenor of the sulfide phase and the efficiency of the accumulation process. If a magma is to give rise to a magmatic sulfide deposit, it must be at least locally saturated with sulfide at some stage during its differentiation history. It follows that it would be most advantageous in the exploration for magmatic sulfide ores to be able to identify bodies of igneous rock that crystallized from magmas that were once sulfide saturated. To this end, a computer model has been formulated that simulates the differentiation of mafic and ultramafic magmas under sulfide-saturated and sulfide-undersaturated conditions (Duke and Naldrett, 1978; Duke, 1979).The calculation is based on equations expressing the conservation of mass and the equilibrium partitioning of elements between silicate liquid and each of the other phases. The input to the program includes the bulk composition of the magma and the proportions in which the phases olivine, clinopyroxene, orthopyroxene, plagioclase, and sulfide are to be fractionally segregated from the magma. The procedure is a reiterative one involving the calculation of the partition coefficients for each element as a function of the magma composition, calculation of the compositions of each of the fractionating phases, and subtraction of these in the desired proportions from the magma. These steps are repeated using the final liquid composition from one increment as the initial composition for the subsequent increment. Perfect fractionation is simulated as long as the increment size is sufficiently small. The output of the program includes the compositions of the residual liquid and each of the fractionating phases as a function of the amount of fractionation. The computer model has been used to simulate ore-forming processes in a variety of mafic and ultramafic magma suites but its application to the differentiation of Archean komatiitic magmas has been particularly instructive. Comparison of the model results with analyses of natural rocks indicates that the liquid equivalent members of komatiitic suites from a number of Archean greenstone sequences could be derivative liquids produced by fractional crystallization of olivine from sulfide-undersaturated parent magmas initially containing about 32% MgO. Analogous samples from ore-bearing komatiitic sequences, however, are in many cases depleted in chalcophile elements to the degree predicted by the computer model for sulfide-saturated fractionation. Examples of such chalcophile element depletion have been documented in the ultramafic lavas of the Malartic Group in northwestern Quebec which hosts the Marbridge deposit, in the komatiitic sequence at Kambalda in Western Australia which hosts at least 20 deposits (Lesher, Lee, Groves, Bickle, and Donaldson, 1981),and in the komatiitic lavas in the vicinity of the Scotia deposit in Western Australia (Stolz, 1981).These results demonstrate the potential utility of the modeling procedure in mineral exploration. The model calculations may also be of use in the evaluation of mineral resources. The degree of chalcophile element depletion that occurs during the fractionating of a sulfide-saturated magma is related to the relative amount of sulfide that is segregated. Thus, if the initial quantity of magma is known, the quantity of sulfide that was segregated from the magma may be estimated from the chalcophile element trends. For example, Lesher, Lee, Groves, Bickle, and Donaldson (1981)have concluded that the amount of ore represented by past production and current reserves of the Kambalda camp is only a fraction of the total quantity of sulfide segregated from the magma that gave rise to the ultramafic sequence there.  相似文献   

18.
The Skaergaard Layered Series. Part VI. Excluded Trace Elements   总被引:1,自引:2,他引:1  
In contrast to the smooth trends of major elements and mineralcompositions, the excluded trace elements in the SkaergaardLayered Series have an irregular distribution that does notconform to the normal trends of Rayleigh-type fractionation.Their concentrations are about constant or even decline throughthe Lower and Middle Zones before increasing sharply to reachmaximum concentrations 100–200 m above the Sandwich Horizon.As in the case of included elements, the relative concentrationsof excluded elements in coexisting phases deviate widely fromthose predicted by experimentally determined partition coefficientsunder presumed magmatic conditions. This is seen most clearlyin the immiscible melanogranophyres and conjugate ferrogabbros.Although the major elements conform to the experimentally determinedrelations for immiscible liquids, the trace elements do not;they follow a totally independent trend. The abrupt increasein the concentrations of excluded elements in the upper partof the intrusion could plausibly be attributed to an additionof new magma or to a density inversion that resulted in upwardmigration of a late liquid or fluid, but these possibilitiesare inconsistent with the compositional and spatial relationsof the upper parts of the intrusion. Although a late residualliquid certainly migrated upward, the most likely explanationfor the observed distribution of excluded elements is that thepartition coefficients were altered by volatile components,which gradually increased during the early stages of crystallizationthen began to exsolve near the top of the Middle Zone. KEY WORDS: igneous differentiation; Skaergaard intrusion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号