首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 995 毫秒
1.
The Dynasonde is a digital ionosonde which measures the amplitude and phase of radio echoes reflected from the ionosphere. In addition to the frequency and virtual range of each echo, one parameter of particular interest is the direction of arrival which allows horizontal structures in the ionosphere to be studied. Under suitable ionospheric conditions, namely where structures or strong gradients are present in the electron concentration, echoes may be observed out to horizontal distances of several hundred kilometres. We describe an automated method for latitudinally mapping these gradients in F-region peak electron concentration using the Dynasonde. Good agreement is found when the results are compared with a co-located incoherent scatter radar lending credibility to observations of electron concentration gradients by a Dynasonde alone. This is significant for sites where no supporting instruments exist. Although Dynasondes account for only a small fraction of digital ionosondes in use today, the techniques described in this paper could be extended to other digital ionosondes with similar directional capabilities. The combination of routine soundings, and the worldwide distribution of such instruments, would provide a powerful means to monitor ionospheric structures on a regular basis.  相似文献   

2.
We have observed a number of strong echoes with the European incoherent-scatter (EISCAT) UHF (930-MHz) radar at angles 83.5° and 78.6° with the geomagnetic field and at about 100-km altitude north in the auroral zone. The echoes are shortlived and occur in single 2- or 10-s data dumps. They are offset by 125–130 kHz with respect to the transmitted frequency. In most cases the offset compares well with the frequency of gyro lines in the incoherent-scatter spectrum, as given by the standard linear dispersion relation. But sometimes the measured offsets deviate significantly from the model calculations, and the interpretation in terms of gyro lines becomes questionable. The discrepancy could possibly be explained by local deviations in the magnetic field from the model (IGRF 1987), which are generated by incoming particle beams. A more serious problem with the gyro-line theory is how the line can be excited at altitudes where the collisional damping is substantial. The high intensity and short lifetime of the signal point to a fast-growing plasma instability as the likely excitation mechanism, if the gyro-line interpretation is correct. The cause of the instability could be the same particle beams as those causing the disturbances in the magnetic field. Alternatively, the observations may be interpreted as meteor head echoes. The large Doppler shifts, the short lifetimes and the altitudes of the signals support this explanation. The main difficulty is that the distribution of measured offsets appears to be different in magnetically active conditions and in less active conditions. Also, the occurrence of echoes does not seem to follow the expected changes in meteor density. More observations in different conditions are needed to decide between the two interpretations. As it is, we are inclined to believe in the meteor head echo theory, the objections to the gyro-line theory being more fundamental.  相似文献   

3.
Modern ionosondes make almost simultaneous measurements of the time rate of change of phase path in different directions and at different heights. By combining these Doppler measurements and angles of arrival of many such radar echoes it is possible to derive reliable estimates of plasma drift velocity for a defined scattering volume. Results from both multifrequency and kinesonde-mode soundings at 3-min resolution show that the Dynasonde-derived F-region drift velocity is in good agreement with EISCAT, despite data loss during intervals of blanketing by intense E-region ionisation. It is clear that the Tromsø Dynasonde, employing standard operating modes, gives a reliable indication of overall convection patterns during quiet to moderately active conditions.  相似文献   

4.
5.
The VHF radar system at Aberystwyth (52.4° N, 4.1° E) has been used to make high-time-resolution, multi-beam observations of mesospheric summer echo layers. These show that the altitude and the sense of vertical movement of the layers can vary over time-scales of minutes and horizontal scales of kilometres. In general, the altitude profiles of signal-to-noise ratio provide evidence of a bifurcated structure with sharp changes in the horizontal wind vector and vertical velocity, and enhanced spectral width occurring at the bifurcation level. The implications of the small-scale structure for studies of the aspect sensitivity of radar returns are discussed, and the changes in wind-field at the bifurcation level are compared with wind corners observed in rocket studies of the mesosphere at polar latitudes.  相似文献   

6.
Incoherent scatter radars (ISR) are versatile instruments for continuous monitoring of ionisation processes in the Earths atmosphere. EISCAT, The European Incoherent Scatter facility has proven effective also in meteor studies. The time resolution of the radar can be reduced to a few milliseconds, sufficient to resolve the passage of individual meteors through the narrow ISR beam. Methods for group and phase velocity determination of the meteoroids and the discrepancy between the results related to the target behaviour are presented. The radar cross sections of echoes associated with moving meteoroids (–meteor head echoes) are very small and increase with decreasing wavelength. The parent meteoroids are found to have visual magnitudes far below the detection limit of most optical observations. The equivalent visual magnitude limit of the smallest objects observed by EISCAT in the current experiments has been estimated by two different methods, both from the cross-section measurements and from the measured event rates. Both methods give a limit value of +10 for the smallest objects while the upper limit is +4. The lower limit of the visual magnitude for the collocated optical measurement system is +4. Thus the two detection systems observe two different meteor size ranges, with the radar almost reaching micrometeorite population. Meteor fluxes estimated from the event rates and the radar system parameters agree well with previous extrapolated values for this size range.  相似文献   

7.
The 2D morphology of coherent HF radar and optical cusp aurora has been studied for conditions of predominantly southward IMF conditions, which favours low-latitude boundary layer reconnection. Despite the variability in shape of radar cusp Doppler spectra, the spectral width criterion of 220 m s–1 proves to be a robust cusp discriminator. For extended periods of well-developed radar backscatter echoes, the equatorward boundary of the 220 m s–1 spectral width enhancement lines up remarkably well with the equatorward boundary of the optical cusp aurora. The spectral width boundary is however poorly determined during development and fading of radar cusp backscatter. Closer inspection of radar Doppler profile characteristics suggests that a combination of spectral width and shape may advance boundary layer identification by HF radar. For the two December days studied the onset of radar cusp backscatter occurred within pre-existing 630.0 nm cusp auroral activity and appear to be initiated by sunrise, i.e. favourable radio wave propagation conditions had to develop. Better methods are put forward for analysing optical data, and for physical interpretation of HF radar data, and for combining these data, as applied to detection, tracking, and better understanding of dayside aurora. The broader motivation of this work is to develop wider use by the scientific community, of results of these techniques, to accelerate understanding of dynamic high-latitude boundary-processes. The contributions in this work are: (1) improved techniques of analysis of observational data, yielding meaningfully enhanced accuracy for deduced cusp locations; (2) a correspondingly more pronounced validation of correlation of boundary locations derived from the observational data set; and (3) a firmer physical rationale as to why the good correlation observed should theoretically be expected.  相似文献   

8.
Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.  相似文献   

9.
Efforts have been made to extend the MF radar tidal profiles to E-region heights. The totally reflected MF radar echoes from E-region heights during daytime are known to be group-retarded and the corresponding wind and tidal data will have associated height discrepancies. The estimation of the E-region real heights (Namboothiri et al., 1993), and the elimination of the data for which the group retardation is significant, are selected as the basic criteria to extend the tidal profiles to 100–125 km. The analysis of the quiet (Ap<19) days of the winter and summer seasons of 1988/89 shows that the tidal propagation continues to higher altitudes with some changes in their pattern, e.g. longer wavelengths, compared to that in the lower altitudes. Comparison with the model profiles shows some resemblance and some disagreements. The reliability of the MF radar tidal measurements of E-region heights and the propagation of tides in this region have been discussed in the light of existing theories and other experimental observations. It is concluded that, based on the initial studies with UHF and MF systems and within the limits of the available theories, the information on tides presented here for the 100–125 km region using the MF radar observations is useful. Suggestions for future work in this direction are also given.  相似文献   

10.
中低纬电离层E区不规则体准周期雷达回波现象,在地球不同经度区被观测到并开展了有关研究.本文利用三亚(109.6°E,18.4°N)VHF相干散射雷达2011年2月6日的观测,第一次给出了中国低纬电离层E区准周期回波的发生和变化特征.观测结果表明:准周期回波发生在地方时夜间2100—2200LT的110km高度上,与连续性回波可同时发生;准周期回波斜纹在雷达探测的高度-时间-强度(HTI)图上可延伸5~20km,持续时间为5~15min,回波斜纹高度随时间以20~30m/s下降,斜纹在HTI图上彼此间隔10km和10min左右.此外,雷达回波多普勒谱和雷达干涉分析显示不同高度准周期回波的多普勒速度随高度-时间表现出不同的变化趋势,与回波条纹斜率无明显联系,不同高度准周期回波对应的不规则体在东西方向也表现出截然不同的运动特征.分析结果表明,三亚电离层E区准周期回波的发生可能并不是由散块Es随着中性风周期性的经过雷达探测区域所致,而可能和Es中的扰动结构相关.  相似文献   

11.
基于三亚(109.6°E,18.4°N)VHF电离层相干散射雷达观测,分析了我国低纬电离层E区场向不规则结构连续性回波的发生特征.研究结果表明:白天,E区连续性回波的多普勒速度范围为-50至25m/s,多普勒宽度主要分布在20至70m/s;连续性回波的高度大约以1km/h的速度缓慢下降,与偶发E层(Es)底部所在高度(hbEs)有很好的相关性,表明在背景电场影响下,Es经梯度漂移不稳定性产生场向不规则结构,引起E区连续性回波.夜间,E区连续性回波的多普勒速度范围为-50至50m/s,多普勒宽度为20至110m/s,回波在时间-高度-强度图上常呈现多层结构,可能与潮汐引起的多个离子层相关;而E区连续性回波的短暂中断,以及120km以上高E区连续性回波的发生,则可能归因于赤道扩展F极化电场的影响.此外,对E区连续性回波多普勒速度与全天空流星雷达风场观测的比较发现,在100km以下,多普勒速度与子午风场有很好的相关性.  相似文献   

12.
13.
We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earths ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20/30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.  相似文献   

14.
The EISCAT VHF radar (69.4°N, 19.1°E) has been used to record vertical winds at mesopause heights on a total of 31 days between June 1990 and January 1993. The data reveal a motion field dominated by quasi-monochromatic gravity waves with representative apparent periods of 30–40 min, amplitudes of up to 2.5 m s–1 and large vertical wavelength. In some instances waves appear to be ducted. Vertical profiles of the vertical-velocity variance display a variety of forms, with little indication of systematic wave growth with height. Daily mean variance profiles evaluated for consecutive days of recording show that the general shape of the variance profiles persists over several days. The mean variance evaluated over a 10 km height range has values from 1.2 m2s–2 to 6.5 m2s–2 and suggests a semi-annual seasonal cycle with equinoctial minima and solsticial maxima. The mean vertical wavenumber spectrum evaluated at heights up to 86 km has a slope (spectral index) of -1.36 ± 0.2, consistent with observations at lower heights but disagreeing with the predictions of a number of saturation theories advanced to explain gravity-wave spectra. The spectral slopes evaluated for individual days have a range of values, and steeper slopes are observed in summer than in winter. The spectra also appear to be generally steeper on days with lower mean vertical-velocity variance.  相似文献   

15.
Many geophysical fields show highly intermittent fractal structures spanning wide ranges of scale. However, few are isotropic: texture, stratification, as well as variable (scale dependent) orientation of structures is far more common. To deal with such fractals, we must generalise the idea of scale invariance beyond the familiar self-similar (or even self-affine) notions. Taking the atmosphere as our primary example (however, we also model galaxies), we outline the necessary formalism (generalised scale invariance), and show how it can be used to deal with the strongly intermittent structures which result from multiplicative (cascade type) processes concentrating matter or energy into smaller and smaller scales.We illustrate these ideas with rain data from blotting paper and radar, showing first how to directly estimate the elliptical dimension characterising the stratification, and second, how to determine universal scale-independent (invariant) codimension functions that characterise the distribution of the intense rain regions.  相似文献   

16.
17.
The recent availability of substantial data sets taken by the EISCAT Svalbard Radar allows several important tests to be made on the determination of convection patterns from incoherent scatter radar results. During one 30-h period, the Svalbard Radar made 15 min scans combining local field aligned observations with two, low elevation positions selected to intersect the two beams of the Common Programme Four experiment being simultaneously conducted by the EISCAT VHF radar at Troms. The common volume results from the two radars are compared. The plasma convection velocities determined independently by the two radars are shown to agree very closely and the combined three-dimensional velocity data used to test the common assumption of negligible field-aligned flow in this regime.  相似文献   

18.
The results of an analysis of midlatitude coherent echo, registered with the Irkutsk incoherent scatter radar during 53 observational seances, are presented. The observations continued for 4358 h from January 1998 to January 2005. Echo signals revealed during an analysis are divided into two groups with respect to power: strong (s) and weak (w) echoes. It was detected that echo signals with coherent echo characteristics are observed during all local time hours and at different levels of geomagnetic activity. The probability of s-echo appearance is minimal in noon hours and is maximal in post-midnight-morning hours. It has been indicated that the longest and strongest coherent echoes are observed at midlatitudes during great magnetic storms at an increased dynamic pressure of the solar wind.  相似文献   

19.
Radioacoustic sounding (RASS), normally used for temperature profiling, can also be applied for wind measurements. The RASS detects echoes of radar waves, which have been scattered at acoustic waves, and derives the sound velocity from the frequency shift. From the difference of sound velocities measured under different beam directions windprofiles can be determined. Ground clutter does not principally interfere with RASS echoes due to their big frequency shift. Therefore, RASS can supplement radar wind profilers at lower levels where clear-air echoes may be not detectable due to ground clutter. The upper measuring altitude of RASS is limited to a few thousand radar wavelengths by the sound absorption and by the drift of the focal spot of the RASS echo. A further alternative for low-level wind measurements is the Doppler sodar. It is less sensitive to ground clutter than radar, but the measuring height is also limited by sound absorption. It requires no frequency allocation and may therefore be the only choice at some locations. In Germany, Doppler sodars have been operating successfully on a routine basis for more than 10 years at several sites for environmental monitoring purposes.  相似文献   

20.
Abstract

Quality is key to ensuring that the potential offered by weather radar networks is realized. To achieve optimum quality, a comprehensive radar data quality management system, designed to monitor the end-to-end radar data processing chain and evaluate product quality, is being developed at the UK Met Office. Three contrasting elements of this system are described: monitoring of key radar hardware performance indicators; generation of long-term integrations of radar products; and monitoring of radar reflectivity factor using synthesized observations from numerical weather prediction model fields. Examples of each component are presented and ways in which the different types of monitoring information have been used to both identify issues with the radar product data quality and help formulate solutions are given.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Harrison, D., Georgiou, S., Gaussiat, N., and Curtis, A., 2013. Long-term diagnostics of precipitation estimates and the development of radar hardware monitoring within a radar product data quality management system. Hydrological Sciences Journal, 59 (7), 1327–1342. http://dx.doi.org/10.1080/02626667.2013.841316  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号