首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Scaling laws for interaction of ultra-intense laser beams with a collisionless plasmas are discussed. Special attention is paid to the problem of the collective ion acceleration. Symmetry arguments in application to the generation of the poloidal magnetic field are presented. A heuristic model for evaluating the magnetic field strength is proposed. PACS Numbers: 52.38Kd, 52.38.Fz, 41.75.Jv  相似文献   

2.
We review the particle-in-cell simulation results related to the recently discovered particle acceleration mechanism called the Diamagnetic Relativistic Pulse Accelerator, or DRPA. This mechanism may be relevant to the prompt gamma-ray emission of gamma-ray bursts. It may also be testable with future laboratory experiments using ultra-intense lasers.  相似文献   

3.
We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGN, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.  相似文献   

4.
We discuss the necessary requirements to create dense electron-positron plasmas in the laboratory and the possibility of using them to investigate certain aspects of various astrophysical phenomena, such as gamma ray burst engines. Earth-based electron-positron plasmas are created during the interaction of ultra-intense laser pulses impinging on a solid density target. The fact that positrons can be generated during this interaction has already been demonstrated by Cowan et al. (2000). However, several questions concerning the number, energy, and dynamics of these positrons have yet to be answered. Through insight gathered from PIC simulations, we postulate that the e+e plasma leaves the creation region in dense jets, with relativistic energies. In order to estimate the number density of the positrons created, we begin by first experimentally measuring the hot electron temperatures and densities of such interactions using a compact electron spectrometer. Once the electron distribution is known, the positron creation rate, Γ, can be estimated. This same experimental diagnostic can also, with minor modification, measure the energy distribution of positrons. Initial estimates are that, with proper target and laser configurations, we could potentially create one of the densest arraignments of positrons ever assembled on earth. This experimental configuration would only last for a few femtoseconds, but would eventually evolve into astrophysically relevant pure electron-positron jets, possibly relevant to e+e outflow from black holes.  相似文献   

5.
Similarity theory, which is necessary in order to apply the results of laboratory astrophysics experiments to relativistic astrophysical plasmas, is presented. The analytical predictions of the similarity theory are compared with PIC numerical simulations and the most recent experimental data on monoenergetic electron acceleration in diluted plasmas and high harmonic generation at overdense plasma boundaries. We demonstrate that similarity theory is a reliable tool for explaining a surprisingly wide variety of laboratory plasma phenomena the predictions of which can be scaled up to astrophysical dimensions.  相似文献   

6.
Acceleration processes for fast particles in astrophysical and space plasmas are reviewed with emphasis on stochastic acceleration by MHD turbulence and on acceleration by shock waves. Radiation processes in astrophysical and space plasmas are reviewed with emphasis on plasma emission from the solar corona and electron cyclotron maser emission from planets and stars.  相似文献   

7.
In this paper we examine the problems of phasing using light curves and offer an alternate technique using the changes in acceleration to establish the zero point. We give astrophysical justification as to why this technique is useful and apply the technique to a selection of Type II Cepheids. We then examine some limitations of the technique which qualify its use.  相似文献   

8.
9.
We discuss astronomical and astrophysical evidence, which we relate to the principle of zero-total energy of the Universe, that imply several relations among the mass M, the radius R and the angular momentum L of a “large” sphere representing a Machian Universe. By calculating the angular speed, we find a peculiar centripetal acceleration for the Universe. This is an ubiquituous property that relates one observer to any observable. It turns out that this is exactly the anomalous acceleration observed on the Pioneers spaceships. We have thus shown that this anomaly is to be considered a property of the Machian Universe. We discuss several possible arguments against our proposal.  相似文献   

10.
A series of experiments is underway using the Omega laser to examine radiative shocks of astrophysical relevance. In these experiments, the laser accelerates a thin layer of low-Z material, which drives a strong shock into xenon gas. One-dimensional numerical simulations using the HYADES radiation hydrodynamics code predict that radiation cooling will cause the shocked xenon to collapse spatially, producing a thin layer of high density (i.e., a collapsed shock). Preliminary experimental results show a less opaque layer of shocked xenon than would be expected assuming that all the xenon accumulates in the layer and that the X-ray source is a pure Kα source. However, neither of these assumptions is strictly correct. Here we explore whether radial mass and/or energy transport may be significant to the dynamics of the system. We report the results of two-dimensional numerical simulations using the ZEUS-2D astrophysical fluid dynamics code. Particular attention is given to the simulation method.  相似文献   

11.
An extreme anomaly of laser-plasma interaction with petawatt-picosecond (PW-ps) pulses of very high contrast ratio for suppression of relativistic self-focusing permitted a come-back of the Bobin-Chu side-on ignition of uncompressed deuterium-tritium (DT) fusion fuel. The plasma blocks for the side-on ignition have to be produced by the well confirmed nonlinear force acceleration which is about 100,000 times higher than thermo-kinetic fluid-dynamic acceleration for comparison with astrophysical cases. It is essential that the dielectric plasma properties within the nonlinear force are used. Using the measured ion beam densities above 1011 A s/cm2 the ignition mechanism needed numerical and theoretical studies of extremely strong shock phenomena. When extending these results to the side-on ignition of uncompressed hydrogen-boron11 (HB11), surprisingly, the ignition by this shock mechanism was only about 10 times more difficult than for DT in contrast to ignition by spherical laser driven compression using thermo-kinetic conditions in which case HB11 ignition is 100,000 times more difficult than DT.  相似文献   

12.
Relativistic shocks provide an efficient method for high-energy particle acceleration in many astrophysical sources. Multiple shock systems are even more effective and of importance, for example, in the internal shock model of gamma-ray bursts. We investigate the reacceleration of pre-existing energetic particles at such relativistic internal shocks by the first order Fermi process of pitch angle scattering. We use a well established eigenfunction method to calculate the resulting spectra for infinitely thin shocks. Implications for GRBs and relativistic jets are discussed. Paul Dempsey would like to thank IRCSET for their financial support.  相似文献   

13.
We discuss the preliminary estimates to create Neutron Star atmospheric conditions in the laboratory and the possibility of generating photon bubbles. The minimal requirements for photon-bubble instability could potentially be met with a properly configured 10 ps petawatt laser experiment. The high energy (multi-MeV) electrons generated by an ultra-intense laser interacting with a foil are coupled to the electrons in the solid to heat the entire solid generating high thermal temperatures. Small amounts of matter could potentially be heated to ~1 keV temperatures with large radiation temperature. Additionally, 2-D PIC simulations show large B-fields on both the front and back of these targets with B fields consistent with experiments using the petawatt at Rutherford Appleton Laboratory (Tatarakis, M. et al.: 2002c, Nature 415, 280).  相似文献   

14.
We show that a steady mean-field dynamo in astrophysical rotators leads to an outflow of relative magnetic helicity and thus magnetic energy available for particle and wind acceleration in a corona. The connection between energy and magnetic helicity arises because mean-field generation is linked to an inverse cascade of magnetic helicity. To maintain a steady state in large magnetic Reynolds number rotators, there must then be an escape of relative magnetic helicity associated with the mean field, accompanied by an equal and opposite contribution from the fluctuating field. From the helicity flow, a lower limit on the magnetic energy deposited in the corona can be estimated. Steady coronal activity including the dissipation of magnetic energy, and formation of multi-scale helical structures therefore necessarily accompanies an internal dynamo. This highlights the importance of boundary conditions which allow this to occur for non-linear astrophysical dynamo simulations. Our theoretical estimate of the power delivered by a mean-field dynamo is consistent with that inferred from observations to be delivered to the solar corona, the Galactic corona, and Seyfert 1 AGN coronae.  相似文献   

15.
Evidence for an accelerated expansion of the universe as it has been revealed 10 years ago by the Hubble diagram of distant type Ia supernovae represents one of the major modern revolutions for fundamental physics and cosmology. It is yet unclear whether the explanation of the fact that gravity becomes repulsive on large scales should be found within general relativity or within a new theory of gravitation. However, existing evidences for this acceleration all come from astrophysical observations. Before accepting a drastic revision of fundamental physics, it is interesting to critically examine the present situation of the astrophysical observations and the possible limitation in their interpretation. In this review, the main various observational probes are presented as well as the framework to interpret them with special attention to the complex astrophysics and theoretical hypotheses that may limit actual evidences for the acceleration of the expansion. Even when scrutinized with skeptical eyes, the evidence for an accelerating universe is robust. Investigation of its very origin appears as the most fascinating challenge of modern physics.  相似文献   

16.
Particle acceleration at astrophysical shocks may be very efficient if magnetic scattering is self-generated by the same particles. This non-linear process adds to the non-linear modification of the shock due to the dynamical reaction of the accelerated particles on the shock. Building on a previous general solution of the problem of particle acceleration with arbitrary diffusion coefficients, we present here the first semi-analytical calculation of particle acceleration with both effects taken into account at the same time; charged particles are accelerated in the background of Alfvén waves that they generate due to the streaming instability, and modify the dynamics of the plasma in the shock vicinity.  相似文献   

17.
Some consequences of MOND (Modification of Newtonian dynamics) proposed as an alternative hypothesis to dark matter for various astrophysical situations is discussed. The ubiquitous occurrence of the fundamental acceleration invoked is pointed out.  相似文献   

18.
We review the recent developments of laser pair creation in the laboratory and their potential applications to astrophysics and other frontiers. Many astrophysical phenomena involving e+e plasmas may be systematically investigated in the laboratory setting. We also discuss potential applications of dense positronium gas.  相似文献   

19.
We discuss the design of jet-driven, radiative-blast-wave experiments for a 10 kJ class pulsed laser facility. The astrophysical motivation is the fact that jets from Young Stellar Objects are typically radiative and that the resulting radiative bow shocks produce complex structure that is difficult to predict. To drive a radiative bow shock, the jet velocity must exceed the threshold for strong radiative effects. Using a 10 kJ class laser, it is possible to produce such a jet that can drive a radiative bow shock in gas that is dense enough to permit diagnosis by x-ray radiography. We describe the design and simulations of such experiments. The basic approach is to shock the jet material and then accelerate it through a collimating hole and into a Xe ambient medium. We identify issues that must be addressed through experimentation or further simulations in order to field successful experiments.  相似文献   

20.
On the origin of highest energy cosmic rays   总被引:1,自引:0,他引:1  
In this paper we show that the conventional diffusive shock acceleration mechanism for cosmic rays associated with relativistic astrophysical shocks in active galactic nuclei (AGNs) has severe difficulties to explain the highest energy cosmic ray events. We show that protons above around 2 x 1020 eV could have marginally been produced by this mechanism in an AGN or a rich galaxy cluster not further away than around 100 Mpc. However, for the highest energy Fly's Eye and Yakutsk events this is inconsistent with the observed arrival directions. Galactic and intergalactic magnetic fields appear unable to alter the direction of such energetic particles by more than a few degrees. We also discuss some other options for these events associated with relativistic particles including pulsar acceleration of high Z nuclei. At the present stage of knowledge the concept of topological defects left over from the early universe as the source for such events appears to be a promising option. Such sources are discussed and possible tests of this hypothesis are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号